MAGNETIC RESONANCE IMAGING IN PREDICTING OUTCOMES OF SEVERE TRAUMATIC BRAIN INJURY IN CHILDREN



如何引用文章

全文:

详细

Treatment of patients with severe traumatic brain injury is very expensive. The main problem of medical care with its adaptation to neurological outcomes is the choice of diagnostic techniques as predictive tools that reliably predict long-term neurological and psychological outcomes. The extended range of magnetic resonance techniques, including SWI, diffusion-weighted and diffusion-tensor images (DWI / DTI), magnetic resonance spectroscopy (MRS) and functional magnetic resonance imaging allows to identify not only anatomical, but also functional brain damage. In the review, the authors discuss the latest information on visual and quantitative assessment of abnormalities in patient with TBI; new understanding and clinical significance of various MRI methods are shown as well. The authors define new biomarkers and their potential for predicting TBI outcomes. Several combined modalities not only provide better understanding of major physiological changes in patients with TBI, but they also improve diagnostic accuracy in outcome predicting. The present review is a summary of some important researches published recently.

关键词

作者简介

T. Ahadov

Clinical and Research Institute of Emergency Pediatric Surgery and Trauma

编辑信件的主要联系方式.
Email: noemail@neicon.ru
俄罗斯联邦

N. Semenova

Clinical and Research Institute of Emergency Pediatric Surgery and Trauma

Email: noemail@neicon.ru
俄罗斯联邦

M. Akhlebina

Clinical and Research Institute of Emergency Pediatric Surgery and Trauma

Email: noemail@neicon.ru
俄罗斯联邦

A. Manzhurtsev

Clinical and Research Institute of Emergency Pediatric Surgery and Trauma

Email: noemail@neicon.ru
俄罗斯联邦

O. Bozhko

Clinical and Research Institute of Emergency Pediatric Surgery and Trauma

Email: noemail@neicon.ru
俄罗斯联邦

I. Melnikov

Clinical and Research Institute of Emergency Pediatric Surgery and Trauma

Email: noemail@neicon.ru
俄罗斯联邦

M. Ublinskiy

Clinical and Research Institute of Emergency Pediatric Surgery and Trauma

Email: noemail@neicon.ru
俄罗斯联邦

参考

  1. Ахадов Т.А., Исхаков О.С., Мельников А.В., Семенова Н.А., Семенова Ж.Б., Доровских Г.Н, Кешишян Р.А., Светлова Е.А. Магнитно-резонансная томография при острой черепно-мозговой травме у детей. Детская хирургия. 2008; 6: 8-11
  2. Uzan M., Albayram S., Dashti S. G. R., Aydin S., Hanci M., Kuday C. Thalamic proton magnetic resonance spectroscopy in vegetative state induced by traumatic brain injury. J Neurol Neurosurg Psychiatry. 2003; 74: 33-8.
  3. Weiss N., Galanaud D., Carpentier A., Naccache L., Puybasset L. Clinical review: Prognostic value of magnetic resonance imaging in acute brain injury and coma. Crit Care. 2007; 11(5): 230. PMID: 17980050 PMCID: PMC2556735doi: 10.1186/cc6107.
  4. Cидорин С.В., Ахадов Т.А., Валиуллина С.А., Семенова Н.А., Мельников И.А., Ублинский М.В. МР-Спектроскопия диффузных аксональных повреждений головного мозга у детей. Вестник неврологии, психиатрии и нейрохирургии. 2013; 8: 30-8
  5. Cecil K.M., Hills E.C., Sandel M.E., Smith D.H., McIntosh T.K., Mannon L.J., Sinson G.P., Bagley L.J., Grossman R.I., Lenkinski R.E. Proton magnetic resonance spectroscopy for the detection of axonal injury in the splenium of the corpus callosum of brain-injured patients. J Neurosurg. 1998; 88: 795-801.
  6. Van Der Naalt J. Resting functional imaging tools (MRS, SPECT, PET and PCT). Traumatic Brain Injury. 2015; 127: 295-308. 10.1016/B978-0-444-52892-6.00019-2.
  7. Browna M., Baradarana H., Christos P. J., Wright D., Guptaac A. Apostolos J. Tsiourisa. Magnetic resonance spectroscopy abnormalities in traumatic brain injury: A meta-analysis. J Neuroradiology. 2018; 45(2): 123-9.
  8. Семенова Н.А., Манжурцев А.В., Меньщиков П.Е., Ублинский М.В., Ахадов Т.А. Магнитно-резонансная спектроскопия: неинвазивные исследования метаболизма мозга человека в норме и патологии. Успехи физиологических наук. 2019; 50(1): 58-74
  9. Ashwal, S., Holshouser, B., Tong, K., Serna, T., Osterdock, R., Gross, M., Kido D. Proton spectroscopy detected myoinositol in children with traumatic brain injury. Pediatr Res. 2004; 56(4): 630-8
  10. Ахадов Т.А., Семёнова Н.А., Ублинский М.В., Меньщиков П.Е., Амчеславский В.Г., Манжурцев А.В. Использование 1H МР-спектроскопии в определении прогностически значимых показателей исхода комы. Терапевт. 2018; 3: 25-32
  11. Brandstack N., Kurki T., Tenovuo O., Isoniemi H. MR imaging of head trauma: visibility of contusions and other intraparenchymal injuries in early and late stage. Brain Inj. 2006; 20: 409-16.
  12. Garnett M.R., Cadoux-Hudson T.A., Styles P. How useful is magnetic resonance imaging in predicting severity and outcome in traumatic brain injury? Curr Opin Neurol. 2001; 14: 753-7.
  13. Filippi M., Rocca M.A. Magnetization transfer magnetic resonance imaging in the assessment of neurological diseases. J Neuroimaging. 2004; 14: 303-13.
  14. Jenkins A., Teasdale G., Hadley M.D., Macpherson P., Rowan J.O. Brain lesions detected by magnetic resonance imaging in mild and severe head injuries. Lancet. 1986; 2: 445-6.
  15. Carpentier A., Galanaud D., Puybasset L., Muller J.C., Lescot T., Boch A.L., Riedl V., Cornu P., Coriat P., Dormont D., van Effenterre R. Early morphologic and spectroscopic magnetic resonance in severe traumatic brain injuries can detect ‘invisible brain stem damage’ and predict ‘vegetative states’. J Neurotrauma. 2006; 23: 674-85.
  16. Levin H.S., Mendelsohn D., Lilly M.A., Yeakley J., Song J., Scheibel R.S., Harward H., Fletcher J.M., Kufera J.A., Davidson K.C., Bruce D. Magnetic resonance imaging in relation to functional outcome of pediatric closed head injury: a test of the Ommaya-Gennarelli model. Neurosurgery. 1997; 40: 432-40.
  17. Parvizi J., Damasio A.R. Neuroanatomical correlates of brainstem coma. Brain. 2003; 126: 1524-36.
  18. Мельников И.А. Магнитно-резонансная томография в диагностике ушибов головного мозга у детей в остром периоде черепно-мозговой травмы. Диссертация к.м.н. Москва, 2014; 130 с
  19. Wilberger J.E. Jr, Deeb Z., Rothfus W. Magnetic resonance imaging in cases of severe head injury. Neurosurgery. 1987; 20: 571-6
  20. Мельников И.А., Сидорин С.В., Гурьяков С.Ю., Ахадов Т.А., Семенова Н.А., Петряйкин А.В. Магнитно-резонансная томография в диагностике ушибов головного мозга у детей. Радиология - практика. 2011; 1: 14-23.
  21. Мельников И.А., Ахадов Т.А., Семенова Н.А., Петряйкин А.В., Сидорин С.В., Гурьяков С.Ю. Магнитно-резонансная томография при диффузном аксональном повреждении у детей в остром периоде черепно-мозговой травмы. Нейрохирургия и неврология детского возраста. 2011; 4(30): 60-6.
  22. Parizel PM, Ozsarlak , Van Goethem JW, van den Hauwe L, Dillen C, Verlooy J, Cosyns P, De Schepper AM: Imaging findings in diffuse axonal injury after closed head trauma. Eur Radiol 1998, 8:960-5
  23. Корниенко В.Н., Пронин И.Н. Диагностическая нейрорадиология. М.: ИП «Андреева Т.М.»; 2006: 871-969
  24. Ashwal S., Tong K. A., Ghosh N., Bartnik-Olson B., Holshouser B. A. Application of Advanced Neuroimaging Modalities in Pediatric Traumatic Brain Injury. Journal of Child Neurology. 2014; 29 (12): 1704-17. 10.1177/0883073814538504.
  25. Huisman T.A. Diffusion-weighted imaging: basic concepts and application in cerebral stroke and head trauma. Eur Radiol. 2003; 13: 2283-97.
  26. Shenton M.E., Hamoda H.M., Schneiderman J.S. A review of magnetic resonance imaging and diffusion tensor imaging findings in mild traumatic brain injury. Brain Imaging and Behavior. 2012; 6: 137-92.
  27. Fox W.C., Park M.S., Belverud S., Klugh A., Rivet D., Tomlin J.M. Contemporary imaging of mild TBI: the journey toward diffusion tensor imaging to assess neuronal damage. Neurological Research. 2013; 35: 223-32.
  28. Hasan K.M., Wilde E.A., Miller E.R., Kumar Patel V., Staewen T.D., Frisby M.L., Garza H.M., McCarthy J.J., Hunter J.V., Levin H.S., Robertson C.S., Narayana P.A. Serial atlas-based diffusion tensor imaging study of uncomplicated mild traumatic brain injury in adults. Journal of Neurotrauma. 2014; 31: 466-75.
  29. Murdoch I., Nicoll J.A., Graham D.I., Dewar D. Nucleus basalis of Meynert pathology in the human brain after fatal head injury. J Neurotrauma. 2002; 19: 279-84.
  30. Мельников И.А., Ахадов Т.А., Семенова Н.А. Магнитно-резонансная томография при диффузном аксональном повреждении у детей в остром периоде. Неврология и нейрохирургия детского возраста. 2011; 4: 60-6
  31. Hahn Y.S., Fuchs S., Flannery A.M., Barthel M.J., McLone D.G. Factors influencing posttraumatic seizures in children. Neurosurgery. 1988; 22(5): 864-97.
  32. Ashwal S., Babikian T., Gardner-Nichols J., Freier M-C., Tong K. A., Holshouser B. A. Susceptibility-Weighted Imaging and Proton Magnetic Resonance Spectroscopy in Assessment of Outcome After Pediatric Traumatic Brain Injury. Archives of Physical Medicine and Rehabilitation. 2006;87(12): 50-8.
  33. Holshouser B. A., Tong K. A., Ashwal S. Proton MR spectroscopic imaging depicts diffuse axonal injury in children with traumatic brain injury. AJNR. 2005; 26: 1276-85.
  34. Kennedy M. R., Wozniak J. R., Muetzel R. L., Mueller B. A., Chiou H., Pantekoek K. White matter and neurocognitive changes in adults with chronic traumatic brain injury. Journal of International Neuropsychological Society. 2009; 15: 130-6.
  35. Kinnunen K. M., Greenwood R., Powell J. H., Leech R., Hawkins P. C., Bonnelle V. White matter damage and cognitive impairment after traumatic brain injury. Brain. 2011; 134: 449-63.
  36. Echlin P. A prospective study of physician-observed concussion during a varsity university ice hockey season. Neurosurg Focus. 2012; 33: 1-7.
  37. Geurts B.H., Andriessen T.M., Goraj B.M., Vos P.E. The reliability of magnetic resonance imaging in traumatic brain injury lesion detection. Brain Inj. 2012; 26: 1439-50.
  38. Park J.H., Park S.W., Kang S.H., Nam T.K., Min B.K., Hwang S.N. Detection of traumatic cerebral microbleeds by susceptibility-weighted image of MRI. J Korean NeurosurgSoc. 2009; 46: 365-9.
  39. Mayer A.R., Ling J.M., Yang Z., Pena A., Yeo R.A., Klimaj S. Diffusion abnormalities in pediatric mild traumatic brain injury. J Neurosci. 2012; 32: 17961-9.
  40. Shenton M.E., Hamoda H.M., Schneiderman J.S., Bouix S., Pasternak O., Rathi Y., Vu M.A., Purohit M.P., Helmer K., Koerte I., Lin A.P., Westin C.F., Kikinis R., Kubicki M., Stern R.A., Zafonte R. A review of magnetic resonance imaging and diffusion tensor imaging findings in mild traumatic brain injury. Brain Imaging and Behavior. 2012; 6: 137-92.
  41. Inglese M., Makani S., Johnson G., Cohen B.A., Silver J.A., Gonen O., Grossman R.I. Diffuse axonal injury in mild traumatic brain injury: a diffusion tensor imaging study. Journal of Neurosurgery. 2005; 103: 298-303. http://dx.doi.org/ 10. 3171/jns.2005. 103.2.029816175860.
  42. Tong K.A., Ashwal S., Holshouser B.A., Shutter L.A., Herigault G., Haacke E.M., Kido D.K. Hemorrhagic shearing lesions in children and adolescents with posttraumatic diffuse axonal injury: improved detection and initial results. Radiology. 2003; 227(2): 332-9.
  43. Maller J.J., Thomson R.H., Lewis P.M., Rose S.E., Pannek K., Fitzgerald P.B. Traumatic brain injury, major depression, and diffusion tensor imaging: making connections. Brain Res Rev. 2010; 64(1): 213-40. doi: 10.1016/j.brainresrev.2010.04.003.
  44. Mac Donald C.L., Dikranian K., Song S.K., Bayly P.V., Holtzman D.M., Brody D.L. Detection of traumatic axonal injury with diffusion tensor imaging in a mouse model of traumatic brain injury. Exp Neurol. 2007; 205(1): 116-31.
  45. Brody D.L., Mac Donald C.L., Shimony J.S. Current and future diagnostic tools for traumatic brain injury: CT, conventional MRI, and diffusion tensor imaging. Handb Clin Neurol. 2015; 127: 267-75. doi: 10.1016/B978-0-444-52892-6.00017-9.
  46. Xiong K.L., Zhu Y.S., Zhang W.G. Diffusion tensor imaging and magnetic resonance spectroscopy in traumatic brain injury: a review of recent literature. Brain Imaging Behav. 2014; 8(4): 487-96. doi: 10.1007/s11682-013-9288-2.
  47. Wilde E.A., Chu Z., Bigler E.D., Hunter J.V., Fearing M.A., Hanten G., Newsome M.R., Scheibel R.S., Li X., Levin H.S. Diffusion tensor imaging in the corpus callosum in children after moderate to severe traumatic brain injury. J Neurotrauma. 2006; 23(10): 1412-26.
  48. Danielsen E.R., Ross. B. Magnetic resonance spectroscopy diagnosis of neurological diseases. Marcel Dekker, New York; 1999: 349.
  49. Garnett M.R., Corkill R.G., Blamire A.M., Rajagopalan B., Manners D.N., Young J.D., Styles P., Cadoux-Hudson T.A. Altered cellular metabolism following traumatic brain injury: a magnetic resonance spectroscopy study. J Neurotrauma. 2001; 18: 231-40.
  50. Alessandri B., Doppenberg E., Zauner, Woodward J., Choi S., Bullock R. Evidence for time-dependent glutamate-mediated glycolysis in head-injured patients: a microdialysis study. Acta Neurochir Suppl. 1999; 75: 25-8.
  51. Garnett M.R., Blamire A.M., Corkill R.G., Cadoux-Hudson T.A., Rajagopalan B., Stylet P. Early proton magnetic resonance spectroscopy in normal-appearing brain correlates with outcome in patients following traumatic brain injury. Brain. 2000; 123: 2046-54.
  52. Меньщиков П.Е., Семенова Н.А., Манжурцев А.В., Мельников И.А., Ублинский М.В., Ахадов Т.А., Варфоломеев С.Д. Нарушение метаболизма аспартата, глутамата и N-ацетиласпартата в мозге человека при черепно-мозговой травме по данным протонной магнитно-резонансной спектроскопии. Биофизика. 2018; 63(5): 1204-10
  53. Signoretti S., Marmarou A., Tavazzi B., Lazzarino G., Beaumont A., Vagnozzi R. N-Acetylaspartate reduction as a measure of injury severity and mitochondrial dysfunction following diffuse traumatic brain injury. J Neurotrauma. 2001; 18: 977-91. doi: 10.1089/08977150152693683.
  54. Vagnozzi R., Signoretti S., Floris R. Decrease in N-acetylaspartate following concussion may be coupled to decrease in creatine. Journal of Head Trauma Rehabilitation. 2013; 28: 284-92.
  55. Kubas B., Łebkowski W., Łebkowska U., Kułak W., Tarasow E., Walecki J. Proton MR spectroscopy in mild traumatic brain injury. Pol J Radiol. 2010; 75(4): 7-10.
  56. Gasparovic C., Yeo R. ,Mannell M., Ling J., Elgie R., Phillips J., Doezema D., Mayer A.R. Neurometabolite concentrations in gray and white matter in mild traumatic brain injury: an 1H-magnetic resonance spectroscopy study. Journal of Neurotrauma. 2009; 26: 1635-43.
  57. Семенова Ж.Б., Ахадов Т.А., Семенова Н.А., Петряйкин А.В., Семенова Н.Ю., Сидорин С.В., Ушаков В.Л. Применение функциональной магнитно-резонансной томографии в клинической практике у детей с тяжелой черепно-мозговой травмой и гипоксическим поражением мозга. Ядерная физика и инжиниринг. 2012; 3(6): 519-519
  58. Merzagora A.R., Izzetoglu M., Onaral B., Schultheis M.T. Verbal working memory impairments following traumatic brain injury: An fNIRS investigation. Brain Imaging and Behavior. 2014; 8(3): 446-59.
  59. Hibino S., Mase M., Shirataki T., Nagano Y., Fukagawa K., Abe A., Nishide Y., Aizawa A., Iida A., Ogawa T., Abe J., Hatta T., Yamada K., Kabasawa H. Oxyhemoglobin changes during cognitive rehabilitation after traumatic brain injury using near infrared spectroscopy. Neurol Med Chir. 2013; 53(5): 299-303.

补充文件

附件文件
动作
1. JATS XML

版权所有 © , 2019

##common.cookie##