LASER SURGERY OF NEVUS OF OTA AND NEVUS OF ITO



如何引用文章

全文:

详细

Introduction. Clinical variants of congenital melanocytosis in the dermis- nevus of Ota and nevus of Ito (NOI) - may cause marked cosmetic effects; they fail to regress and are reported to be associated with the risk of malignancy. Purpose. To develop criteria and the algorithm for selecting the optimal laser system and radiation specifications to remove NOI considering specific properties of the optical pattern of skin lesions having different locations and melanin concentration. Methods. A scientific and analytical review of publications indexed in PubMed, ScienceDirect, Embase, Web of Science, Russian Medicine, RSCI. Calculation of laser radiation absorption coefficients for various pathomorphological variants of dermal melanocyte locations, given the peculiarities of laser light interaction with targeted photothermophores in NOI focus. Results. The authors present data on epidemiology, history and clinical features of congenital derma melanocytosis of nevus of Ota and nevus of Ito (NOI) - localized, predominantly in periocular and periclavicular regions. Molecular mechanisms of NOI progression in children and adolescents are discussed. There are also data [WU1] on the efficacy and risks of side effects when treating NOI lesions with ruby (wavelength 694 nm), alexandrite ( wavelength 755 nm) and neodymium ( wavelength 1064 nm) laser light. Effectiveness and features of side effects of different wavelengths of laser light are compared. In the article, one can find criteria for selecting an optimal option for NOI laser treatment: maximal efficiency assessed by the visual analogue scale (VAS), number of laser sessions and severity of early and late side effects. For the first time, the authors present data on calculations of quantitative characteristics of optic skin biophotonic pattern if a melanocyte is localized in the papillary and reticular dermis in periocular zone. Conclusion. The obtained calculations on optic characteristics of skin biophotonics suggest [WU2] that two-wave laser irradiation with wavelengths 511 nm and 578 nm will be highly effective with a minimum risk of side effects when removing atypical melanocytes in case of congenital melanocytosis in the papillary and reticular dermis in periocular zone. Algorithms for different pathomorphological variants of melanocyte locatied in the dermis in NOI focus have been proposed to obtain an optimal modality for laser treatment using two-wavelength laser light with 511 nm and 578 nm which is generated by Russian-made copper vapor laser system "Yakhroma-Med" manufactured by Lebedev Physical Institute subordinate to the Russian Academy of Sciences (RAS).

作者简介

I. Ponomarev

Lebedev Physical Institute

编辑信件的主要联系方式.
Email: iponom@okb.lpi.troitsk.ru
俄罗斯联邦

Yu. Andrusenko

Medical Center “Institute of Health”

Email: noemail@neicon.ru
俄罗斯联邦

L. Shakina

National Medical Research Center for Children’s Health

Email: noemail@neicon.ru
俄罗斯联邦

参考

  1. Pusey W.A. Facial naevus involving the sclera. Ophthal. Rec. 1916. 618: 25.
  2. Hulke J.W. Series of cases of carcinoma of the eyeball (case 2). Ophthalmol Hosp Rep. 1861;3:279-86
  3. Ota M., Tanino H. Nevus fusco-ceruleus ophthalmomaxillaris. Tokyo Med J. 1939;63:1243-1245. 86
  4. Chan H.H., Kono T. Nevus of Ota: clinical aspects and management. Skinmed. 2003;2(2):89-98. doi: 10.1111/j.1540-9740.2003.01706.x
  5. Maheshwari R., Desai V., Sunil Kumar M.V., Gaurav I. Unilateral nevus of Ota: A case report of oculodermal melanocytosis. J Dent Allied Sci 2016;5:39-42
  6. Cronemberger S., Calixto N., Freitas H.L. Nevus of Ota: clinical-ophthalmological findings. Rev Bras Oftalmol. 2011; 70 (5): 278-83; Rishi P., Rishi E., Bhojwani D. Giant nevus of Ota. Indian J Ophthalmol. 2015;63(6):532-533. doi: 10.4103/0301-4738.162607
  7. Hirayama T., Suzuki T. A new classification of Ota’s nevus based on histopathological features. Dermatologica 1991;183(3):169-172; Stanford D.G., Georgouras K.E. Dermal melanocytosis: a clinical spectrum. Australas J Dermatol. 1996;37(1):19-25. doi: 10.1111/j.1440-0960.1996.tb00989.x
  8. Rho N.K., Kim W.S., Lee D.Y., et al. Histopathological parameters determining lesion colors in the nevus of Ota: a morphometric study using computer assisted image analysis. Br J Dermatol. 2004;150:1148-53.
  9. Ueda S., Isoda M., Imayama S. Response of naevus of Ota to Q switched ruby laser treatment according to lesion colour. Br J Dermatol. 2000;142(1): 77-83
  10. Teekhasaenee C., Ritch R., Rutnin Uet al.Ocular findings in oculoder-mal melanocytosis. Arch Ophthalmol 1990;108: 1114-20.
  11. Elmas Ö.F., Kilitçi A. Dermoscopic Findings of Nevus of Ota Balkan Med J. 2019; doi: 10.4274/balkanmedj.galenos.2019.11.46
  12. Nam J.H., Kim H.S., Choi Y.J., Jung H.J., Kim W.S. Treatment and classification of nevus of ota: a seven-year review of a single institution’s experience. Ann dermatol. 2017; 29(4):446-453. doi: 10.5021/ad.2017.29.4.446
  13. Tanino H. Nevus fuscoceruleus ophthalmomaxillaris Ota. Jpn J Dermatol 1939;46:435-51.
  14. Huang W.H., Wang H.W., Sun Q.N., Jin H.Z., Liu Y.H., Ma D.L., et al. A new classification of nevus of Ota. Chin Med J (Engl) 2013;126:3910-3914.
  15. Ota M., Kawamura T., Ito N. Phacomatosis pigmentovascularis. Dermatol Surg. 1947; 52:1-3
  16. Happle R. Phacomatosis pigmentovascularis revisited and reclassified. Arch Dermatol. 2005 Mar;141(3):385-8
  17. Ito M. Studies on melanin. XXII. Nevus fuscocaeruleus acromio-deltoideus. Tohoko J. Exper Med. 1954. 60:10
  18. Okawa Yю, Yokota Rю, Yamauchi A. On the extracellular sheath of dermal melanocytes in nevus fusco-ceruleus acromiodeltoideus (Ito) and Mongolian spot. An ultrastructural study. J Invest Dermatol. 1979;73(3):224-30. doi: 10.1111/1523-1747.ep12514270
  19. Spedo M., Otani C., Amaral D. Bilateral nevus of Ota and nevus of Ito. Journal of the American Academy of Dermatology. 2013; 68 (4), Supplement 1: ab150
  20. Mukhopadhyay A.K. Unilateral Nevus of Ota with Bilateral Nevus of Ito and Palatal Lesion: A Case Report with a Proposed Clinical Modification of Tanino’s Classification. Indian J Dermatol. 2013;58(4):286-9. doi: 10.4103/0019-5154.113943
  21. Alshami M., Bawazir M.A., Atwan A.A. Nevus of Ota: morphological patterns and distribution in 47 Yemeni cases. Journal of the European Academy of Dermatology and Venereology. 2012; 26, 1360-3.
  22. Que S.K., Weston G., Suchecki J., Ricketts J. Pigmentary disorders of the eyes and skin. Clin Dermatol. 2015;33(2):147-58. doi: 10.1016/j.clindermatol.2014.10.007
  23. Okawa Y., Yokota R., Yamauchi A. On the extracellular sheath of dermal melanocytes in nevus fusco-ceruleus acromiodeltoideus (Ito) and Mongolian spot. An ultrastructural study. J Invest Dermatol. 1979;73(3):224-30. doi: 10.1111/1523-1747.ep12514270
  24. Yamaguchi Y., Hearing V.J. Melanocytes and their diseases. Cold Spring Harb Perspect Med. 2014; 4(5): a017046. doi: 10.1101/cshperspect.a017046
  25. Inampudi C., Akintoye E., Ando T., Briasoulis A. Angiogenesis in peripheral arterial disease. Curr Opin Pharmacol. 2018;39:60-7. doi: 10.1016/j.coph.2018.02.011
  26. Shinomiya A., Kayashima Y., Kinoshita K., et al. Gene duplication of endothelin 3 is closely correlated with the hyperpigmentation of the internal organs (Fibromelanosis) in silky chickens. Genetics. 2012;190(2):627-38. doi: 10.1534/genetics.111.136705
  27. Lee J.Y., Kim E.H., Kim K.H., Kang H.Y., Lee E.S., Kim Y.C. Acquired bilateral naevus of Ota-like macules: an immunohistological analysis of dermal melanogenic paracrine cytokine networks. Br J Dermatol. 2011;164(3):580-5. doi: 10.1111/j.1365-2133.2010.10066.x]
  28. Filipp F.V., Li, C. & Boiko A.D. CD271 is a molecular switch with divergent roles in melanoma and melanocyte development. Sci Rep. 2019; 9, 7696. https://doi.org/10.1038/s41598-019-42773-y
  29. Im S., Lee E.S, Kim W., et al. Donor specific response of estrogen and progesterone on cultured human melanocytes. J Korean Med Sci. 2002;17(1):58-64. doi: 10.3346/jkms.2002.17.1.58
  30. Sitek A., Kozieł S., Kasielska-Trojan A., Antoszewski B. Do skin and hair pigmentation in prepubertal and early pubertal stages correlate with 2D:4D. Am J Hum Biol. 2018;30(6):e12631. doi: 10.1002/ajhb.23183
  31. Jeayeng S., Wongkajornsilp A., Slominski A.T., Jirawatnotai S., Sampattavanich S., Panich U. Nrf2 in keratinocytes modulates UVB-induced DNA damage and apoptosis in melanocytes through MAPK signaling. Free Radic Biol Med. 2017;108:918-28. doi: 10.1016/j.freeradbiomed.2017.05.009
  32. Yu F., Lin Y., Zhan T., Chen L., Guo S. HGF expression induced by HIF-1α promote the proliferation and tube formation of endothelial progenitor cells. Cell Biol Int. 2015;39(3):310-7. doi: 10.1002/cbin.10397
  33. De Miguel M.P., Alcaina Y., de la Maza D.S., Lopez-Iglesias P. Cell metabolism under microenvironmental low oxygen tension levels in stemness, proliferation and pluripotency. Curr Mol Med. 2015;15(4):343-59. doi: 10.2174/1566524015666150505160406].
  34. Kono T., Chan H.H., Erçöçen A.R., et al. Use of Q-switched ruby laser in the treatment of nevus of Ota in different age groups. Lasers Surg Med. 2003;32(5):391-5. doi: 10.1002/lsm.10171;
  35. Seo H.M., Choi C.W., Kim W.S. Beneficial effects of early treatment of nevus of Ota with low-fluence 1,064-nm Q-switched Nd:YAG laser. Dermatol Surg. 2015;41(1):142-8. doi: 10.1097/DSS.0000000000000212
  36. Belkin D.A., Jeon H., Weiss E., Brauer J.A., Geronemus R.G. Successful and safe use of Q-switched lasers in the treatment of nevus of Ota in children with phototypes IV-VI. Lasers Surg Med. 2018;50(1):56-60. doi: 10.1002/lsm.22757
  37. Sakio R., Ohshiro T., Sasaki K., Ohshiro T. Usefulness of picosecond pulse alexandrite laser treatment for nevus of Ota. Laser Ther. 2018;27(4):251-5. doi: 10.5978/islsm.27_18-OR-22
  38. Tanaka Y., Tsunemi Y., Kawashima M. Objective assessment of intensive targeted treatment for solar lentigines using intense pulsed light with wavelengths between 500 and 635 nm. Lasers Surg Med. 2016;48(1):30-5. doi: 10.1002/lsm.22433
  39. Rani S., Sardana K. Variables that predict response of nevus of Ota to lasers. J Cosmet Dermatol. 2019Apr;18(2):464-8. doi: 10.1111/jocd.12875;
  40. Levin M.K., Ng E., Bae Y.S., Brauer J.A., Geronemus R.G. Treatment of pigmentary disorders in patients with skin of color with a novel 755 nm picosecond, Q-switched ruby, and Q-switched Nd:YAG nanosecond lasers: A retrospective photographic review. Lasers Surg Med. 2016;48(2):181-7. doi: 10.1002/lsm.22454].
  41. Yang H.Y., Lee C.W., Ro Y.S., et al. Q-switched ruby laser in the treatment of nevus of Ota. J Korean Med Sci. 1996; 11(2):165-70. doi: 10.3346/jkms.1996.11.2.165
  42. Liu Y., Zeng W., Geng S. A Retrospective Study on the Characteristics of Treating Nevus of Ota by 1064-nm Q-switched Neodymium-doped Yttrium Aluminum Garnet Laser. Indian J Dermatol. 2016;61(3):347. doi: 10.4103/0019-5154.182470
  43. Watanabe S., Takahashi H. Treatment of nevus of Ota with the Q-switched ruby laser. N Engl J Med. 1994;331(26):1745-50. doi: 10.1056/NEJM199412293312604
  44. Ohshiro T., Ohshiro T., Sasaki K., Kishi K. Picosecond pulse duration laser treatment for dermal melanocytosis in Asians : A retrospective review. Laser Ther. 2016;25(2):99-104. doi: 10.5978/islsm.16-OR-07
  45. Aurangabadkar S. QYAG5 Q-switched Nd:YAG Laser Treatment of Nevus of Ota: An Indian Study of 50 Patients. J Cutan Aesthet Surg. 2008;1(2):80-4. doi: 10.4103/0974-2077.44164
  46. Choi C.W., Kim H.J., Lee H.J., Kim Y.H., Kim W.S. Treatment of nevus of Ota using low fluence Q-switched Nd:YAG laser. Int J Dermatol. 2014;53(7):861-5. doi: 10.1111/ijd.12085
  47. Shah V.V., Bray F.N., Aldahan A.S., Mlacker S., Nouri K. Lasers and nevus of Ota: a comprehensive review. Lasers Med Sci. 2016;31(1):179-85. doi: 10.1007/s10103-015-1834-2
  48. Pinkert S., Zeuss D. Thermal Biology: Melanin-Based Energy Harvesting across the Tree of Life. Curr Biol. 2018;28(16):R887-9. doi: 10.1016/j.cub.2018.07.026
  49. Jacques S.L. Optical properties of biological tissues: a review. Phys Med Biol. 2013; 58: 37-61. doi: 10.1088/0031-9155/58/11/R37
  50. Murtas D., Pilloni L., Diana A., et al. Tyrosinase and nestin immunohistochemical expression in melanocytic nevi as a histopathologic pattern to trace melanocyte differentiation and nevogenesis. Histochem Cell Biol. 2019;151(2):175-85. doi: 10.1007/s00418-018-1730-5
  51. Derraik J.G., Rademaker M., Cutfield W.S., et al. Effects of age, gender, BMI, and anatomical site on skin thickness in children and adults with diabetes. PLoS One. 2014;9(1):e86637. doi: 10.1371/journal.pone.0086637
  52. Ковалева Ю.С., Ведлер А.А., Козлова М.А., Субботин Е.А. Морфофункциональные характеристики кожи у детей, способы защиты и восстановления. Русский медицинский журнал. Медицинское обозрение. 2018;10:35-9
  53. Kim Y.J., Whang K.U., Choi W.B., et al. Efficacy and safety of 1,064 nm Q-switched Nd:YAG laser treatment for removing melanocytic nevi. Ann Dermatol. 2012;24(2):162-7. doi: 10.5021/ad.2012.24.2.162
  54. Пономарев. И.В Шакина Л.Д. Лазерное лечение врожденных дермальных меланоцитозов. Российский педиатрический журнал. 2020; 23(1):132-37. DOI: http://dx.doi.org/10.18821/1560-9561
  55. Del Bino S., Duval C., Bernerd F. Clinical and Biological Characterization of Skin Pigmentation Diversity and Its Consequences on UV Impact. Int J Mol Sci. 2018;19(9):2668
  56. Verdel N., Marin A., Milanič M., Majaron B. Physiological and structural characterization of human skin in vivo using combined photothermal radiometry and diffuse reflectance spectroscopy. Biomed Opt Express. 2019; 10(2):944-60. doi: 10.1364/BOE.10.000944
  57. Ponomarev I.V., Topchiy S.B., Kazaryan M.A., Pushkareva A.E., Klyuchareva S.V., and Andrusenko Yu.N. Numerical optimization of the dual-wavelengths copper vapor laser treatment of basal cell cancer”. Proc. SPIE 11322, XIV International Conference on Pulsed Lasers and Laser Applications, 113221N (11 December 2019); https://doi.org/10.1117/12.2553321).
  58. Kim Y.S., Lee K.W., Kim J.S., et al. Regional thickness of facial skin and superficial fat: Application to the minimally invasive procedures. Clin Anat. 2019; 32(8):1008-18. doi: 10.1002/ca.2333
  59. Lee H.I., Lim Y.Y., Kim B.J., et al. Clinicopathologic efficacy of copper bromide plus/yellow laser (578 nm with 511 nm) for treatment of melasma in Asian patients. Dermatol Surg. 2010; 36(6):885-93. doi: 10.1111/j.1524-4725.2010.01564.x
  60. Klyuchareva S.V., Ponomarev I.V., Pushkareva A.E. Numerical Modeling and Clinical Evaluation of Pulsed Dye Laser and Copper Vapor Laser in Skin Vascular Lesions Treatment. J Lasers Med Sci. 2019;10(1):44-9. doi: 10.15171/jlms.2019.07

补充文件

附件文件
动作
1. JATS XML

版权所有 © , 2020

##common.cookie##