The pedicle width predicts an accurate screw insertion



如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

Introduction. Correlation between pedicle screw malposition and small values of pedicle morphometric parameters has been confirmed in numerous studies. Definition of critical pedicle size for screw insertion is an actual problem for pediatric spinal surgery.

Material and methods. 29 patients, aged 3-17, with congenital or acquired spinal deformities were included in the study. All the patients had posterior surgery with pedicle screw implantation. All the screws were inserted by free hand technique. On preoperative CT, external pedicle width, internal pedicle width, and spongiosa proportion were measured. On postoperative CT, pedicle screw accuracy was evaluated. The binomial logistic regression was used to define dependence of pedicle screw accuracy on pedicle morphometric parameter values. ROC-curves were graphed, and AUC were calculated.

Results. 233 pedicle screws were implanted to 29 patients by free hand technique. On postoperative CT, 191 (82%) screws were confirmed to be accurately inserted. The logistic model confirmed significance of all the examined morphometric parameters (p<0.001). The external pedicle width possessed the maximal predictive value. Statistical indices for the prognostic model (sensitivity, specificity, and accuracy) were calculated for pedicle width 3.5; 6.0; 7.5 mm.

In the cut-off value of external pedicle width 3.5 mm, probability of accurate screw insertion is about 50%; this technique has been highly sensitive and maximally accurate. This morphometric feature is a technical limit of free hand pedicle screw insertion. Recommendations for selecting an implantation technique in different pedicle width are proposed.

Conclusion. The external pedicle width 3.5 mm is a critical one for pedicle screw insertion by the free hand technique.

作者简介

A. Kosulin

St. Petersburg State Pediatric Medical University

编辑信件的主要联系方式.
Email: hackenlad@mail.ru
ORCID iD: 0000-0002-9505-222X

Artem V. Kosulin - assistant professor, department of operative surgery and topographic n.a. F.I. Valker, Saint-Petersburg State Pediatric Medical University.

194100, Saint-Petersburg

俄罗斯联邦

D. Elyakin

St. Petersburg State Pediatric Medical University

Email: fake@neicon.ru
ORCID iD: 0000-0002-6575-7464

194100, Saint-Petersburg

俄罗斯联邦

L. Kornievskiy

St. Petersburg State Pediatric Medical University

Email: fake@neicon.ru
ORCID iD: 0000-0002-8635-1666

194100, Saint-Petersburg

俄罗斯联邦

D. Malekov

St. Petersburg State Pediatric Medical University

Email: fake@neicon.ru
ORCID iD: 0000-0002-1358-4725

194100, Saint-Petersburg

俄罗斯联邦

A. Vasil'eva

St. Petersburg State Pediatric Medical University

Email: fake@neicon.ru
ORCID iD: 0000-0002-1515-3523

194100, Saint-Petersburg

俄罗斯联邦

G. Bagaturiya

St. Petersburg State Pediatric Medical University

Email: fake@neicon.ru
ORCID iD: 0000-0001-5311-1802

194100, Saint-Petersburg

俄罗斯联邦

E. Terekhina

St. Petersburg State Pediatric Medical University

Email: fake@neicon.ru
ORCID iD: 0000-0002-1769-7284

194100, Saint-Petersburg

俄罗斯联邦

参考

  1. Raasck K., Khoury J., Aoude A., et al. The Effect of Thoracolumbar Pedicle Isthmus on Pedicle Screw Accuracy. Global Spine J. 2020; 10(4): 393-8. https://doi.org/10.1177/2192568219850143
  2. Gonzalvo A., Fitt G., Liew S., et al. Correlation between pedicle size and the rate of pedicle screw misplacement in the treatment of thoracic fractures: Can we predict how difficult the task will be? Br J Neurosurg. 2015; 29(4): 508-12. https://doi.org/10.3109/02688697.2015.1019414
  3. Marks D.S., Qaimkhani S.A. The natural history of congenital scoliosis and kyphosis. Spine (Phila Pa 1976). 2009; 34(17): 1751-5. https://doi.org/10.1097/BRS.0b013e3181af1caf
  4. Aoude A.A., Fortin M., Figueiredo R., et al. Methods to determine pedicle screw placement accuracy in spine surgery: a systematic review. Eur Spine J. 2015; 24(5): 990-1004. https://doi.org/10.1007/s00586-015-3853-x
  5. Perdomo-Pantoja A., Ishida W., Zygourakis C., et al. Accuracy of Current Techniques for Placement of Pedicle Screws in the Spine: A Comprehensive Systematic Review and Meta-Analysis of 51,161 Screws. World Neurosurg. 2019; 126: 664-678.e3. https://doi.org/10.1016/j.wneu.2019.02.217
  6. Amaral T.D., Hasan S., Galina J., et al. Screw Malposition: Are There Longterm Repercussions to Malposition of Pedicle Screws? J Pediatr Orthop. 2021; 41(Suppl 1): S80-6. https://doi.org/1097/BPO.0000000000001828
  7. Delank K.S., Delank H.W., Konig D.P., et al. Iatrogenic paraplegia in spinal surgery. Arch Orthop Trauma Surg. 2005; 125(1): 33-41. https://doi.org/10.1007/s00402-004-0763-5
  8. Leroy A., Kabbaj R., Dubory A., et al. The Indian Basket Trick: a case of delayed paraplegia with complete recovery, caused by misplaced thoracic pedicle screw. Springerplus. 2016; 5(1): 944. https://doi.org/10.1186/s40064-016-2334-y
  9. Mac-Thiong J.M., Parent S., Poitras B., et al. Neurological outcome and management of pedicle screws misplaced totally within the spinal canal. Spine (Phila Pa 1976). 2013; 38(3): 229-37. https://doi.org/10.1097/BRS.0b013e31826980a9
  10. Kakkos S.K., Shepard A.D. Delayed presentation of aortic injury by pedicle screws: report of two cases and review of the literature. J Vasc Surg. 2008; 47(5): 1074-82. https://doi.org/10.1016/j.jvs.2007.11.005
  11. Wegener B., Birkenmaier C., Fottner A., et al. Delayed perforation of the aorta by a thoracic pedicle screw. Eur Spine J. 2008; 17(Suppl. 2): 351-4. https://doi.org/10.1007/s00586-008-0715-9
  12. Koktekir E., Ceylan D., Tatarli N., et al. Accuracy of fluoroscopically-assisted pedicle screw placement: analysis of 1,218 screws in 198 patients. Spine J. 2014; 14(8): 1702-8. https://doi.org/10.1016/j.spinee.2014.03.044
  13. Виссарионов С.В., Шредер Дж.Е., Новиков С.Н., Кокушин Д.Н., Белянчиков С.М., Каплан Л. Применение трехмерной навигации в хирургическом лечении детей с идиопатическим сколиозом. Хирургия позвоночника. 2015; 12(1): 14-20. https://doi.org/10.14531/ss2015.1.14-20.
  14. Rivkin M.A, Yocom S.S. Thoracolumbar instrumentation with CT-guided navigation (O-arm) in 270 consecutive patients: accuracy rates and lessons learned. Neurosurg Focus. 2014; 36(3): E7. https://doi.org/10.3171/2014.1.FOCUS13499
  15. Chen H.Y., Xiao X.Y., Chen C.W., et al. A Spine Robotic-Assisted Navigation System for Pedicle Screw Placement. J Vis Exp. 2020: 159. https://doi.org/10.3791/60924
  16. Wilcox B., Mobbs R.J., Wu A.M., et al. Systematic review of 3D printing in spinal surgery: the current state of play. J Spine Surg. 2017; 3(3): 433-43. https://doi.org/10.21037/jss.2017.09.01
  17. Косулин А.В., Елякин Д.В., Лебедева К.Д., Сухомлинова А.Е., Козлова Е.А., Орехова А.Е. Применение навигационного шаблона для прохождения ножки позвонка при транспедикулярной фиксации. Педиатр. 2019; 10(3): 45-50. https://doi.org/10.17816/PED10345-50
  18. Liang W., Han B., Hai J.J., et al. 3D-printed drill guide template, a promising tool to improve pedicle screw placement accuracy in spinal deformity surgery: A systematic review and meta-analysis. Eur Spine J. 2021; 30(5): 1173-83. https://doi.org/10.1007/s00586-021-06739-x
  19. Bratschitsch G., Leitner L., Stucklschweiger G., et al. Radiation Exposure of Patient and Operating Room Personnel by Fluoroscopy and Navigation during Spinal Surgery. Sci Rep. 2019; 9(1): 7652. https://doi.org/10.1038/s41598-019-53472-z
  20. Hartl R., Lam K.S., Wang J., et al. Worldwide survey on the use of navigation in spine surgery. World Neurosurg. 2013; 79(1): 162-72. https://doi/org/10.1016/j.wneu.2012.03.011
  21. D'Souza M., Gendreau J., Feng A., et al. Robotic-Assisted Spine Surgery: History, Efficacy, Cost, And Future Trends. Robot Surg. 2019; (6): 9-23. https://doi.org/10.2147/RSRR.S190720
  22. Pan Y., Lu G.H., Kuang L., et al. Accuracy of thoracic pedicle screw placement in adolescent patients with severe spinal deformities: a retrospective study comparing drill guide template with free-hand technique. Eur Spine J. 2018; 27(2): 319-26. https://doi.org/10.1007/s00586-017-5410-2
  23. Liu K, Zhang Q, Li X, et al. Preliminary application of a multilevel 3D printing drill guide template for pedicle screw placement in severe and rigid scoliosis. Eur Spine J. 2017; 26(6): 1684-9. https://doi.org/10.1007/s00586-016-4926-1
  24. Akazawa T., Kotani T., Sakuma T., et al. Evaluation of pedicle screw placement by pedicle channel grade in adolescent idiopathic scoliosis: should we challenge narrow pedicles? J Orthop Sci. 2015; 20(5): 818-22. https://doi.org/10.1007/s00776-015-0746-0
  25. Zhang Y., Xie J., Wang Y., et al. Thoracic pedicle classification determined by inner cortical width of pedicles on computed tomography images: its clinical significance for posterior vertebral column resection to treat rigid and severe spinal deformities-a retrospective review of cases. BMC Musculoskelet Disord. 2014; (15): 278. https://doi.org/10.1186/1471-2474-15-278
  26. Gao B., Gao W., Chen C., et al. What is the Difference in Morphologic Features of the Thoracic Pedicle Between Patients With Adolescent Idiopathic Scoliosis and Healthy Subjects? A CT-based Casecontrol Study. Clin Orthop Relat Res. 2017; 475(11): 2765-74. https://doi.org/10.1007/s11999-017-5448-9
  27. Sarwahi V., Sugarman E.P., Wollowick A.L., et al. Prevalence, Distribution, and Surgical Relevance of Abnormal Pedicles in Spines with Adolescent Idiopathic Scoliosis vs. No Deformity: A CT-Based Study. J Bone Joint Surg Am. 2014; 96(11): e92. https://doi.org/10.2106/JBJS.M.01058
  28. Jeswani S., Drazin D., Hsieh J.C., et al. Instrumenting the small thoracic pedicle: the role of intraoperative computed tomography image-guided surgery. Neurosurg Focus. 2014; 36(3): E6. https://doi.org/10.3171/2014.1.FOCUS13527
  29. Fardy J.M, Barrett B.J. Evaluation of Diagnostic Tests. Parfrey P.S., Barrett B.J., eds. Clinical Epidemiology: Practice and Methods. New-York: Springer Science+Business Media, 2015. https://doi.org/10.1007/978-1-4939-2428-8_17

补充文件

附件文件
动作
1. JATS XML

版权所有 © ,

##common.cookie##