The pedicle width predicts an accurate screw insertion
- 作者: Kosulin A.V.1, Elyakin D.V.1, Kornievskiy L.A.1, Malekov D.A.1, Vasil'eva A.G.1, Bagaturiya G.O.1, Terekhina E.V.1
-
隶属关系:
- St. Petersburg State Pediatric Medical University
- 期: 卷 26, 编号 5 (2022)
- 页面: 261-266
- 栏目: ORIGINAL STUDY
- ##submission.dateSubmitted##: 07.07.2022
- ##submission.dateAccepted##: 07.12.2022
- ##submission.datePublished##: 25.11.2022
- URL: https://jps-nmp.ru/jour/article/view/561
- DOI: https://doi.org/10.55308/1560-9510-2022-26-5-261-266
- ID: 561
如何引用文章
详细
Introduction. Correlation between pedicle screw malposition and small values of pedicle morphometric parameters has been confirmed in numerous studies. Definition of critical pedicle size for screw insertion is an actual problem for pediatric spinal surgery.
Material and methods. 29 patients, aged 3-17, with congenital or acquired spinal deformities were included in the study. All the patients had posterior surgery with pedicle screw implantation. All the screws were inserted by free hand technique. On preoperative CT, external pedicle width, internal pedicle width, and spongiosa proportion were measured. On postoperative CT, pedicle screw accuracy was evaluated. The binomial logistic regression was used to define dependence of pedicle screw accuracy on pedicle morphometric parameter values. ROC-curves were graphed, and AUC were calculated.
Results. 233 pedicle screws were implanted to 29 patients by free hand technique. On postoperative CT, 191 (82%) screws were confirmed to be accurately inserted. The logistic model confirmed significance of all the examined morphometric parameters (p<0.001). The external pedicle width possessed the maximal predictive value. Statistical indices for the prognostic model (sensitivity, specificity, and accuracy) were calculated for pedicle width 3.5; 6.0; 7.5 mm.
In the cut-off value of external pedicle width 3.5 mm, probability of accurate screw insertion is about 50%; this technique has been highly sensitive and maximally accurate. This morphometric feature is a technical limit of free hand pedicle screw insertion. Recommendations for selecting an implantation technique in different pedicle width are proposed.
Conclusion. The external pedicle width 3.5 mm is a critical one for pedicle screw insertion by the free hand technique.
作者简介
A. Kosulin
St. Petersburg State Pediatric Medical University
编辑信件的主要联系方式.
Email: hackenlad@mail.ru
ORCID iD: 0000-0002-9505-222X
Artem V. Kosulin - assistant professor, department of operative surgery and topographic n.a. F.I. Valker, Saint-Petersburg State Pediatric Medical University.
194100, Saint-Petersburg
俄罗斯联邦D. Elyakin
St. Petersburg State Pediatric Medical University
Email: fake@neicon.ru
ORCID iD: 0000-0002-6575-7464
194100, Saint-Petersburg
俄罗斯联邦L. Kornievskiy
St. Petersburg State Pediatric Medical University
Email: fake@neicon.ru
ORCID iD: 0000-0002-8635-1666
194100, Saint-Petersburg
俄罗斯联邦D. Malekov
St. Petersburg State Pediatric Medical University
Email: fake@neicon.ru
ORCID iD: 0000-0002-1358-4725
194100, Saint-Petersburg
俄罗斯联邦A. Vasil'eva
St. Petersburg State Pediatric Medical University
Email: fake@neicon.ru
ORCID iD: 0000-0002-1515-3523
194100, Saint-Petersburg
俄罗斯联邦G. Bagaturiya
St. Petersburg State Pediatric Medical University
Email: fake@neicon.ru
ORCID iD: 0000-0001-5311-1802
194100, Saint-Petersburg
俄罗斯联邦E. Terekhina
St. Petersburg State Pediatric Medical University
Email: fake@neicon.ru
ORCID iD: 0000-0002-1769-7284
194100, Saint-Petersburg
俄罗斯联邦参考
- Raasck K., Khoury J., Aoude A., et al. The Effect of Thoracolumbar Pedicle Isthmus on Pedicle Screw Accuracy. Global Spine J. 2020; 10(4): 393-8. https://doi.org/10.1177/2192568219850143
- Gonzalvo A., Fitt G., Liew S., et al. Correlation between pedicle size and the rate of pedicle screw misplacement in the treatment of thoracic fractures: Can we predict how difficult the task will be? Br J Neurosurg. 2015; 29(4): 508-12. https://doi.org/10.3109/02688697.2015.1019414
- Marks D.S., Qaimkhani S.A. The natural history of congenital scoliosis and kyphosis. Spine (Phila Pa 1976). 2009; 34(17): 1751-5. https://doi.org/10.1097/BRS.0b013e3181af1caf
- Aoude A.A., Fortin M., Figueiredo R., et al. Methods to determine pedicle screw placement accuracy in spine surgery: a systematic review. Eur Spine J. 2015; 24(5): 990-1004. https://doi.org/10.1007/s00586-015-3853-x
- Perdomo-Pantoja A., Ishida W., Zygourakis C., et al. Accuracy of Current Techniques for Placement of Pedicle Screws in the Spine: A Comprehensive Systematic Review and Meta-Analysis of 51,161 Screws. World Neurosurg. 2019; 126: 664-678.e3. https://doi.org/10.1016/j.wneu.2019.02.217
- Amaral T.D., Hasan S., Galina J., et al. Screw Malposition: Are There Longterm Repercussions to Malposition of Pedicle Screws? J Pediatr Orthop. 2021; 41(Suppl 1): S80-6. https://doi.org/1097/BPO.0000000000001828
- Delank K.S., Delank H.W., Konig D.P., et al. Iatrogenic paraplegia in spinal surgery. Arch Orthop Trauma Surg. 2005; 125(1): 33-41. https://doi.org/10.1007/s00402-004-0763-5
- Leroy A., Kabbaj R., Dubory A., et al. The Indian Basket Trick: a case of delayed paraplegia with complete recovery, caused by misplaced thoracic pedicle screw. Springerplus. 2016; 5(1): 944. https://doi.org/10.1186/s40064-016-2334-y
- Mac-Thiong J.M., Parent S., Poitras B., et al. Neurological outcome and management of pedicle screws misplaced totally within the spinal canal. Spine (Phila Pa 1976). 2013; 38(3): 229-37. https://doi.org/10.1097/BRS.0b013e31826980a9
- Kakkos S.K., Shepard A.D. Delayed presentation of aortic injury by pedicle screws: report of two cases and review of the literature. J Vasc Surg. 2008; 47(5): 1074-82. https://doi.org/10.1016/j.jvs.2007.11.005
- Wegener B., Birkenmaier C., Fottner A., et al. Delayed perforation of the aorta by a thoracic pedicle screw. Eur Spine J. 2008; 17(Suppl. 2): 351-4. https://doi.org/10.1007/s00586-008-0715-9
- Koktekir E., Ceylan D., Tatarli N., et al. Accuracy of fluoroscopically-assisted pedicle screw placement: analysis of 1,218 screws in 198 patients. Spine J. 2014; 14(8): 1702-8. https://doi.org/10.1016/j.spinee.2014.03.044
- Виссарионов С.В., Шредер Дж.Е., Новиков С.Н., Кокушин Д.Н., Белянчиков С.М., Каплан Л. Применение трехмерной навигации в хирургическом лечении детей с идиопатическим сколиозом. Хирургия позвоночника. 2015; 12(1): 14-20. https://doi.org/10.14531/ss2015.1.14-20.
- Rivkin M.A, Yocom S.S. Thoracolumbar instrumentation with CT-guided navigation (O-arm) in 270 consecutive patients: accuracy rates and lessons learned. Neurosurg Focus. 2014; 36(3): E7. https://doi.org/10.3171/2014.1.FOCUS13499
- Chen H.Y., Xiao X.Y., Chen C.W., et al. A Spine Robotic-Assisted Navigation System for Pedicle Screw Placement. J Vis Exp. 2020: 159. https://doi.org/10.3791/60924
- Wilcox B., Mobbs R.J., Wu A.M., et al. Systematic review of 3D printing in spinal surgery: the current state of play. J Spine Surg. 2017; 3(3): 433-43. https://doi.org/10.21037/jss.2017.09.01
- Косулин А.В., Елякин Д.В., Лебедева К.Д., Сухомлинова А.Е., Козлова Е.А., Орехова А.Е. Применение навигационного шаблона для прохождения ножки позвонка при транспедикулярной фиксации. Педиатр. 2019; 10(3): 45-50. https://doi.org/10.17816/PED10345-50
- Liang W., Han B., Hai J.J., et al. 3D-printed drill guide template, a promising tool to improve pedicle screw placement accuracy in spinal deformity surgery: A systematic review and meta-analysis. Eur Spine J. 2021; 30(5): 1173-83. https://doi.org/10.1007/s00586-021-06739-x
- Bratschitsch G., Leitner L., Stucklschweiger G., et al. Radiation Exposure of Patient and Operating Room Personnel by Fluoroscopy and Navigation during Spinal Surgery. Sci Rep. 2019; 9(1): 7652. https://doi.org/10.1038/s41598-019-53472-z
- Hartl R., Lam K.S., Wang J., et al. Worldwide survey on the use of navigation in spine surgery. World Neurosurg. 2013; 79(1): 162-72. https://doi/org/10.1016/j.wneu.2012.03.011
- D'Souza M., Gendreau J., Feng A., et al. Robotic-Assisted Spine Surgery: History, Efficacy, Cost, And Future Trends. Robot Surg. 2019; (6): 9-23. https://doi.org/10.2147/RSRR.S190720
- Pan Y., Lu G.H., Kuang L., et al. Accuracy of thoracic pedicle screw placement in adolescent patients with severe spinal deformities: a retrospective study comparing drill guide template with free-hand technique. Eur Spine J. 2018; 27(2): 319-26. https://doi.org/10.1007/s00586-017-5410-2
- Liu K, Zhang Q, Li X, et al. Preliminary application of a multilevel 3D printing drill guide template for pedicle screw placement in severe and rigid scoliosis. Eur Spine J. 2017; 26(6): 1684-9. https://doi.org/10.1007/s00586-016-4926-1
- Akazawa T., Kotani T., Sakuma T., et al. Evaluation of pedicle screw placement by pedicle channel grade in adolescent idiopathic scoliosis: should we challenge narrow pedicles? J Orthop Sci. 2015; 20(5): 818-22. https://doi.org/10.1007/s00776-015-0746-0
- Zhang Y., Xie J., Wang Y., et al. Thoracic pedicle classification determined by inner cortical width of pedicles on computed tomography images: its clinical significance for posterior vertebral column resection to treat rigid and severe spinal deformities-a retrospective review of cases. BMC Musculoskelet Disord. 2014; (15): 278. https://doi.org/10.1186/1471-2474-15-278
- Gao B., Gao W., Chen C., et al. What is the Difference in Morphologic Features of the Thoracic Pedicle Between Patients With Adolescent Idiopathic Scoliosis and Healthy Subjects? A CT-based Casecontrol Study. Clin Orthop Relat Res. 2017; 475(11): 2765-74. https://doi.org/10.1007/s11999-017-5448-9
- Sarwahi V., Sugarman E.P., Wollowick A.L., et al. Prevalence, Distribution, and Surgical Relevance of Abnormal Pedicles in Spines with Adolescent Idiopathic Scoliosis vs. No Deformity: A CT-Based Study. J Bone Joint Surg Am. 2014; 96(11): e92. https://doi.org/10.2106/JBJS.M.01058
- Jeswani S., Drazin D., Hsieh J.C., et al. Instrumenting the small thoracic pedicle: the role of intraoperative computed tomography image-guided surgery. Neurosurg Focus. 2014; 36(3): E6. https://doi.org/10.3171/2014.1.FOCUS13527
- Fardy J.M, Barrett B.J. Evaluation of Diagnostic Tests. Parfrey P.S., Barrett B.J., eds. Clinical Epidemiology: Practice and Methods. New-York: Springer Science+Business Media, 2015. https://doi.org/10.1007/978-1-4939-2428-8_17