MULTISPIRAL COMPUTED AND MAGNETIC RESONANCE IMAGING OF THORACOLUMBAR SPINE INJURY IN CHILDREN


Cite item

Full Text

Abstract

Introduction. Spinal injury in pediatric practice is met relatively rare; spinal fractures in children do not exceed 5%, and the incidence rate does not exceed 5:100000. However, spinal injuries have a high rate of fetal outcomes (up to 5-10%), and have significant long-lasting negative effects. Therefore, to timely detect such injuries is extremely important for determining treatment tactics, preventing secondary damage to nerve structures and preventing the formation of spinal deformity. Purpose. To assess and compare CT and MRI potentials for developing a diagnostic algorithm in children with thoracolumbar spine injury. Material and methods. 4355 patients, aged 6 months - 17 years, with thoracolumbal spine injury were included into the study . All patients had radiography of the thoracic or lumbar spine and MRI of three spinal sections. Multispiral computed tomography ( MSCT) was performed with Brilliance 16 and 64 scanners. Information on the thoracolumbal spine picture obtained by scanning the chest and abdomen was assessed using findings of frontal and sagittal and 3D reformatted images. MRI was performed on Achieva 3 T scanner; multi-planar T1-, T2-weighted images of (WI) TSE and STIR images in axial, frontal and sagittal projections with a slice thickness of 2-4 mm were obtained. A special spinal 32 channel coil was used. Results. To compare the effectiveness of CT and MRI techniques in the diagnostics of thoracolumbar spinal injury, a sampling of 95 patients was selected. The number of injuries (total and their distribution by the type of injury) was defined using the sample findings. The total number of detected injuries was: only by MRI = 325; only by CT = 228; MRI + CT = 199. By the results of McNemar test, it has been found out that MRI detects statistically significantly better explosive fractures of the vertebrae, ruptures of the posterior longitudinal ligament (PLL) and yellow ligament (YL), ruptures of third column ligaments, herniated discs, epidural and sublingual hematomas, hematomyelia, complete and partial ruptures of the spinal cord and its edema; CT has superiority in detecting fractures of posterior vertebral elements. Conclusion. Currently, MSCT remains a key imaging technique in the diagnostics of acute spinal injuries in most cases in children and adults. Our findings confirm that MRI - in the absence of standard absolute contraindications - can serve as a worthy alternative for assessing damages of the vertebral bodies, ligaments, intervertebral discs, spinal cord and its roots in the acute stage of injury, yielding only in detecting injuries in vertebra posterior elements. The absence of ionizing radiation is also one of MSCT advantages which makes its use preferable for spinal injury diagnostics in children, both for primary and for control examinations.

About the authors

T. A. Akhadov

Clinical and Research Institute of Emergency Pediatric Surgery and Trauma

Author for correspondence.
Email: noemail@neicon.ru
ORCID iD: 0000-0002-3235-8854
Russian Federation

I. A. Melnikov

Clinical and Research Institute of Emergency Pediatric Surgery and Trauma

Email: noemail@neicon.ru
ORCID iD: 0000-0002-2910-3711
Russian Federation

O. S. Iskhakov

Clinical and Research Institute of Emergency Pediatric Surgery and Trauma

Email: noemail@neicon.ru
ORCID iD: 0000-0001-6065-3079
Russian Federation

O. V. Bozhko

Clinical and Research Institute of Emergency Pediatric Surgery and Trauma

Email: noemail@neicon.ru
ORCID iD: 0000-0002-4709-9461
Russian Federation

T. D. Kostikova

Clinical and Research Institute of Emergency Pediatric Surgery and Trauma

Email: noemail@neicon.ru
ORCID iD: 0000-0002-9103-9191
Russian Federation

A. V. Manzhurtsev

Clinical and Research Institute of Emergency Pediatric Surgery and Trauma

Email: noemail@neicon.ru
ORCID iD: 0000-0001-5022-9952
Russian Federation

M. V. Ublinsky

Clinical and Research Institute of Emergency Pediatric Surgery and Trauma

Email: maxublinsk@mail.ru
ORCID iD: 0000-0002-4627-9874
Russian Federation

S. V. Meshcheryakov

Clinical and Research Institute of Emergency Pediatric Surgery and Trauma

Email: noemail@neicon.ru
Russian Federation

A. A. Maksutov

Clinical and Research Institute of Emergency Pediatric Surgery and Trauma

Email: noemail@neicon.ru
Russian Federation

References

  1. Крылов В.В., Таланкина И.Е., Поздняков А.В., Гринь А.А., Попов С.В. Причины летальных исходов и ошибки диагностики при повреждении позвоночника и спинного мозга у больных с сочетанной травмой. Нейрохирургия. 2003; 3: 17-21.
  2. Соколов В.А. Множественные и сочетанные травмы. М.: ГЭОТАР-Медиа. 2006; 512с.
  3. Ropper A. E., Neal M. T., Theodore N. Acute management of traumatic cervical spinal cord injury. Pract Neurol. 2015; 15(4): 266-72.
  4. Devivo M.J. Epidemiology of traumatic spinal cord injury: trends and future implications. Spinal Cord. 2012; 50: 365 -72.
  5. Hu R., Mustard C.A., Burns C. Epidemiology of incident spinal fracture in a complete population. e. 1996; 21(4): 492 - 9.
  6. Carreon L.Y., Glassman S.D., Campbell M.J. Pediatric spine fractures: a review of 137 hospital admissions. J Spinal Disord Tech. 2004; 17(6): 477-82.
  7. Knox J., Schneider J., Wimberly R.L., Riccio A.I. Characteristics of spinal injuries secondary to nonaccidental trauma. J Pediatr Orthop. 2014; 34: 376-81.
  8. Климов В.С., Шулев Ю.А. Клинико-эпидемиологический анализ острой травмы шейного отдела позвоночника и спинного мозга в Тульской области. Нейрохирургия. 2008; 3: 68-72.
  9. Беков М.М. Хирургическое лечение травмы грудного и смежных отделов позвоночника и спинного мозга. Автореф. дисс. канд. мед. наук. СПб. 2018; 25.
  10. Гринь А.А., Крылов В.В. Лечение больных с осложненными и неосложненными повреждениями позвоночника при сочетанной травме. Хир. позвоночника. 2005; 4: 8-14.
  11. Ахадов Т.А., Панов В.О., Айхофф У. Травма спинного мозга и позвоночника и ее последствия. Магнитно-резонансная томография спинного мозга и позвоночника. М.: ВИНИТИ. 2000; 586-633.
  12. Ахадов Т.А., Саруханян О.О., Кешишян Р.А. Магнитно-резонансная томография спинальной травмы у детей. М.: ООО «Коммерческие технологии». 2012; 136 с.
  13. Ахадов Т.А., Телешов Н. В., Саруханян О.О. Магнитно-резонансная томография в диагностике травмы позвоночника и спинного мозга в остром периоде у детей. Метод. рекомендации. М. 2011; с. 46.
  14. Игнатьев Ю.Т. Лучевая диагностика травм позвоночника у детей. Докт. дисc. СПб. 2004; 9-174.
  15. Stulík J., Pesl T., Kryl J., Vyskocil T., Sebesta P., Havránek P. Spinal injuries in children and adolescents. Acta Chir Orthop Traumatol Cech. 2006; 73(5): 313-20.
  16. Bilston L. E., Brown J. Pediatric spinal injury type and severity are age and mechanism dependent. Spine. 2007; 32: 2339-47.
  17. Basu S. Spinal Injuries in Children. Front Neurol. 2012; 3: 96 - 104.
  18. Mlyavyh S., Morozov I. Orthopedic-surgical rehabilitation and regenerative treatment patients with spinal cord injury in the intermediate and late period. International conference on recent advances in neurotraumatology. ICRAN. 2010: 160-1.
  19. Hamilton M.G., Myles S.T. Pediatric spinal injury: review of 174 hospital admissions. J Neurosurg. 1992; 77: 700-4.
  20. Viccellio P., Simon H., Pressman B.D., Shah M.N., Mower W.R., Hoffman J.R. A prospective multicenter study of cervical spine injury in children. Pediatrics. 2001; 108(2): E20.
  21. Rozzelle C.J., Aarabi B., Dhall S. S., Gelb D. E., John Hurlbert R., Ryken T. C., Theodore N., Walters B. C., Hadley M.N. Spinal Cord Injury Without Radiographic Abnormality (SCIWORA). Neurosurgery. 2013; 72(3): 227-33.
  22. Koulouris G., Ting A. Y.I., Morrison W.B. Spinal Trauma: Imaging, Diagnosis, and Management. 2007; 13: 289-97.
  23. Azimi P., Mohammadi H.R., Azhari S., Alizadeh P., Montazeri A. The AOSpine thoracolumbar spine injury classification system: A reliability and agreement study. Asian J Neurosurg. 2015; 10(4): 282 - 5.
  24. Rydberg J., Buckwalter K.A., Caldemeyer K.S., Phillips M.D., Conces D.J. Jr, Aisen A.M., Persohn S.A., Kopecky K.K. Multisection CT: scanning techniques and clinical applications. Radiographics. 2000; 20: 1787-806.
  25. Buckwalter K.A., Rydberg J., Kopecky K.K., Crow K., Yang E.L. Musculoskeletal imaging with multislice CT. AJR Am J Roentgenol. 2001; 176: 979-86.
  26. Watura R., Cobby M., Taylor J. Multislice CT in imaging of trauma of the spine, pelvis and complex foot injuries. Br J Radiol. 2004; 77(1): 46-63.
  27. Looby S., Flanders A. Spinal trauma. Radiol Clin N Am. 2011; 49: 129-63.
  28. Haba H., Taneichi H., Kotani Y., Terae S., Abe S., Yoshikawa H., Abumi K., Minami A., Kaneda K. Diagnostic accuracy of magnetic resonance imaging for detecting posterior ligamentous complex injury associated with thoracic and lumbar fractures. J. Neurosurg. 2003; 99: 20-6.
  29. Castilo M. Spinal Imaging: Critical Topics for Clinical Practice. Jaypes Brothers Med. Pub. 2016: 29-59.
  30. Klein G.R., Vaccaro A.R., Albert T.J., Schweitzer M., Deely D., Karasick D., Cotler J.M. Efficacy of magnetic resonance imaging in the evaluation of posterior cervical spine fractures. Spine. 1999; 24: 771-4.
  31. Lee H.M., Kim H.S., Kim D.J., Suk K.S., Park J.O., Kim N.H. Reliability of magnetic resonance imaging in detecting posterior ligament complex injury in thoracolumbar spinal fractures. Spine. 2000; 25: 2079-84.
  32. Sliker C.W., Mirvis S.E., Shanmuganathan K. Assessing cervical spine stability in obtunded blunt trauma patients: Review of medical literature. Radiology. 2005; 234: 733-9.
  33. Provenzale J. MR imaging of spinal trauma. Emerg. Radiol. 2007; 13: 289-97.
  34. Kliewer M.A., Gray L., Paver J., Richardson W.D., Vogler J.B., McElhaney J.H., Myers B.S. Acute spinal ligament disruption: MR imaging with anatomic correlation. J. Magn. Reson. Imaging. 1993; 3: 855-61.
  35. Bozzo A., Marcoux J., Radhakrishna M., Pelletier J., Goulet B. The Role of Magnetic Resonance Imaging in the Management of Acute Spinal Cord Injury. J Neurotrauma. 2011; 28(8): 1401-11. doi: 10.1089/neu.2009.1236.
  36. Hackney D.B., Asato R., Joseph P.M., Carvlin M.J., McGrath J.T., Grossman R.I., Kassab E.A., DeSimone D. Hemorrhage and edema in acute spinal cord compression: demonstration by MR imaging. Radiology. 1986; 161: 387-90.
  37. Andreoli C., Colaiacomo M.C., Rojas Beccaglia M., Di Biasi C., Casciani E., Gualdi G. MRI in the acute phase of spinal cord traumatic lesions: Relationship between MRI findings and neurological outcome. Radiol. Med. 2005; 110: 636-45.
  38. Shanmuganathan K., Gullapalli R.P., Zhuo J., Mirvis S.E. Diffusion tensor MR imaging in cervical spine trauma. AJNR Am J Neuroradiol. 2008; 29: 655-9.
  39. Rajasekaran S., Kanna R.M., Shetty A.P. Diffusion tensor imaging of the spinal cord and its clinical applications. J Bone Joint Surg Br. 2012; 94: 1024-31.
  40. Zhang J.S., Huan Y. Multishot diffusion-weighted MR imaging features in acute trauma of spinal cord. Eur Radiol. 2014; 24: 685-92.
  41. Shen H., Tang Y., Huang L., Yang R., Wu Y., Wang P., Shi Y., He X., Liu H., Ye J. Applications of diffusion-weighted MRI in thoracic spinal cord injury without radiographic abnormality. Int. Orthop. 2007; 31: 375-83.
  42. Tsuchiya K., Fujikawa A., Honya K., Tateishi H., Nitatori T. Value of diffusion-weighted MR imaging in acute cervical cord injury as a predictor of outcome. Neuroradiology. 2006; 48: 803-8.
  43. Khurana B., Sheehan S.E., Sodickson A., Bono C.M., Harris M.B. Traumatic Thoracolumbar Spine Injuries: What the Spine Surgeon Wants to Know. RadioGraphics. 2013; 33: 2031-46.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2020

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies