Platelet monoamine oxidase and erythrocyte adenosine triphosphatase as biomarkers of necrotizing enterocolitis
- Authors: Vinel P.K.1, Tsareva V.V.1,2, Baboshko P.G.2, Sinitskii A.I.1, Kozhevnikov A.S.1, Grunin A.V.1
-
Affiliations:
- South-Ural State Medical University
- Chelyabinsk Regional Pediatric Hospital
- Issue: Vol 28, No 2 (2024)
- Pages: 124-132
- Section: ORIGINAL STUDY
- Submitted: 13.05.2023
- Accepted: 29.03.2024
- Published: 30.05.2024
- URL: https://jps-nmp.ru/jour/article/view/670
- DOI: https://doi.org/10.17816/ps670
- ID: 670
Cite item
Abstract
BACKGROUND: The diagnostics of necrotizing enterocolitis is a complex and often ineffective issue. Biomarkers reflecting key links in the pathogenesis of the disease may serve as early predictors of development, progression, and severe course of necrotizing enterocolitis.
AIM: To assess potentials of platelet monoamine oxidase activity and erythrocyte ATPase to predict the development of necrotizing enterocolitis in premature newborns.
METHODS: The present study had two stages and included 28 children who were treated at the Chelyabinsk Regional Children’s Clinical Hospital from November 2021 to December 2022. At the first stage, premature newborns were examined; among them a group of newborns with necrotizing enterocolitis IIB–IIIA-B was identified. Venous blood was used for testings. At the second stage, specimens obtained from the intestine during surgical interventions in newborns with surgical pathology were examined additionally as well.
RESULTS: Children with necrotizing enterocolitis showed a significant decrease in the specific activity of platelet monoamine oxidase which correlated with the activity of monoamine oxidase in gut specimens. The following changes were registered: decrease in the activity of magnesium adenosine triphosphatasein erythrocytes by 50–100% of the maximum enzyme activity in the control group; decrease of sodium-potassium adenosine triphosphatase activity y 4 times from the maximum values in the control group. There was also a significant increase in the activity of calcium adenosine triphosphatase activity in erythrocytes.
CONCLUSION: The obtained data allow to suggest that platelet monoamine oxidase in preterm newborns may potentially serve as an indicator of tissue and organ immaturity, rather than a marker of inflammation and oxidative damage. Changes in erythrocyte adenosine triphosphatase activity in preterm infants with surgical stages of necrotizing enterocolitis indicate a hypoxic hypoenergetic state, accompanied by high concentrations of intracellular calcium.
The obtained data are promising for developing new methods for diagnosis/prognosis of necrotizing enterocolitis in newborns.
Keywords
Full Text
About the authors
Polina K. Vinel
South-Ural State Medical University
Author for correspondence.
Email: vinelpolina@icloud.com
ORCID iD: 0000-0002-3745-3690
SPIN-code: 6298-8131
MD
Россия, 64 Vorovskogo street, 454092 ChelyabinskValentina V. Tsareva
South-Ural State Medical University; Chelyabinsk Regional Pediatric Hospital
Email: semenovatsareva@mail.ru
ORCID iD: 0000-0002-6695-7388
SPIN-code: 7966-9068
MD, Cand. Sci. (Medicine)
Россия, 64 Vorovskogo street, 454092 Chelyabinsk; ChelyabinskPavel G. Baboshko
Chelyabinsk Regional Pediatric Hospital
Email: 904306008@mail.ru
ORCID iD: 0009-0009-2627-0459
Россия, Chelyabinsk
Anton I. Sinitskii
South-Ural State Medical University
Email: Sinitskiyai@yandex.ru
ORCID iD: 0000-0001-5687-3976
SPIN-code: 3681-1816
MD, Dr. Sci. (Medicine), Associate Professor
Россия, 64 Vorovskogo street, 454092 ChelyabinskArtem S. Kozhevnikov
South-Ural State Medical University
Email: vk_523@mail.ru
ORCID iD: 0009-0008-5400-3043
MD
Россия, 64 Vorovskogo street, 454092 ChelyabinskAlexandr V. Grunin
South-Ural State Medical University
Email: sasha_grunin@mail.ru
ORCID iD: 0009-0007-9327-7779
MD
Россия, 64 Vorovskogo street, 454092 ChelyabinskReferences
- Tan X, Zhou Y, Xu L, et al. The predictors of necrotizing enterocolitis in newborns with low birth weight: A retrospective analysis. Medicine. 2022;101(7):e28789. doi: 10.1097/MD.0000000000028789
- Vinel PK, Tsareva VV, Sinitskiy AI, et al. Biomarkers of necrotizing enterocolitis through the prism of etiopathogenesis. Medical news of North Caucasus. 2023;18(2):211–218. EDN: HEHMIA doi: 10.14300/mnnc.2023.18051
- Gershon MD, Sherman DL, Pintar JE. Type-specific localization of monoamine oxidase in the enteric nervous system: Relationship to 5-hydroxytryptamine, neuropeptides, and sympathetic nerves. J Comp Neurol. 1990;301(2):191–213. doi: 10.1002/cne.903010205
- Nicotra A, Pierucci F, Parvez H, Senatori O. Monoamine oxidase expression during development and aging. Neurotoxicology. 2004;25(1-2):155–165. EDN: LNMWSN doi: 10.1016/S0161-813X(03)00095-0
- Lewinsohn R, Glover V, Sandler M. Development of benzylamine oxidase and monoamine oxidase A and B in man. Biochem Pharmacol. 1980;29(9):1221–1230. doi: 10.1016/0006-2952(80)90278-6
- Ramsay RR, Albreht A. Kinetics, mechanism, and inhibition of monoamine oxidase. J Neural Transm (Vienna). 2018;125(11):1659–1683. EDN: YPBYWP doi: 10.1007/s00702-018-1861-9
- Bond PA, Cundall RL. Properties of monoamine oxidase (MAO) in human blood platelets, plasma, lymphocytes and granulocytes. Clinica Chimica Acta. 1977;80(2):317–326. doi: 10.1016/0009-8981(77)90039-0
- Shulhan J, Dicken B, Hartling L, Larsen BM. Current knowledge of necrotizing enterocolitis in preterm infants and the impact of different types of enteral nutrition products. Adv Nutr. 2017;8(1):80–91. doi: 10.3945/an.116.013193
- Vinel PK, Grobovoy SI, Sinitskii AI, Kolesnikov OL. Modification of a spectrophotometric method for assessment of monoamine oxidase activity with 2,4-dinitrophenylhydrazine as a derivatizing reagent. Anal Biochem. 2021;(629):114294. doi: 10.1016/j.ab.2021.114294
- Bartolommei G, Moncelli MR, Tadini-Buoninsegni F. A method to measure hydrolytic activity of adenosine triphosphatases (ATPases). PLoS One. 2013;8(3):e58615. doi: 10.1371/journal.pone.0058615
- Roth JA, Young JG, Cohen DJ. Platelet monoamine oxidase activity in children and adolescents. Life Sci. 1976;18(9):919–924.doi: 10.1016/0024-3205(76)90409-4
- Cawthon RM, Pintar JE, Haseltine FP, Breakefield XO. Differences in the structure of A and B forms of human monoamine oxidase. J Neurochem. 1981;37(2):363–372. doi: 10.1111/j.1471-4159.1981.tb00464.x
- Sostek AJ, Sostek AM, Murphy DL, et al. Cord blood amine oxidase activities relate to arousal and motor functioning in human newborns. Life Sci. 1981;28(22):2561–2568. doi: 10.1016/0024-3205(81)90599-3
- Jones JB, Southgate J. Platelet monoamine oxidase activity in the human fetus. Dev Med Child Neurol. 1976;18(5):640–642. doi: 10.1111/j.1469-8749.1976.tb04209.x
- Lewinsohn R, Sandler M. Monoamine-oxidizing enzymes in human pregnancy. Clin Chim Acta. 1982;120(3):301–312. doi: 10.1016/0009-8981(82)90371-0
- Oreland L, Shaskan EG. Monoamine oxidase activity as a biological marker. Trends Pharmacol Sci. 1983;(4):339–341. doi: 10.1016/0165-6147(83)90432-7
- Stillwell W. An introduction to biological membranes: Composition, structure and function. 2 rev ed. Elsevier Science; 2016. 564 р.
- Bistritzer T, Berkovitch M, Rappoport MJ, et al. Sodium potassium adenosine triphosphatase activity in preterm and term infants and its possible role in sodium homeostasis during maturation. Arch Dis Child Fetal Neonatal Ed. 1999;81(3):F184–F187. doi: 10.1136/fn.81.3.f184
- Tian J, Xie ZJ. The Na-K-ATPase and calcium-signaling microdomains. Physiology (Bethesda). 2008;23(4):205–211. doi: 10.1152/physiol.00008.2008
- Auland ME, Morris MB, Roufogalis BD. Separation and characterization of two Mg2+-ATPase activities from the human erythrocyte membrane. Arch Biochem Biophys. 1994;312(1):272–277. doi: 10.1006/abbi.1994.1309
- Beleznay Z, Zachowski A, Devaux PF, Ott P. Characterization of the correlation between ATP-dependent aminophospholipid translocation and Mg(2+)-ATPase activity in red blood cell membranes. Eur J Biochem. 1997;243(1-2):58–65. EDN: FOZGWR doi: 10.1111/j.1432-1033.1997.58_1a.x
- Nozadze E, Arutinova N, Tsakadze L, et al. Molecular mechanism of Mg-ATPase activity. J Membr Biol. 2015;248(2):295–300. EDN: HVUIII doi: 10.1007/s00232-014-9769-2
- Bogdanova A, Makhro A, Wang J, et al. Calcium in red blood cells a perilous balance. Int J Mol Sci. 2013;14(5):9848–9872. EDN: RJSVQN doi: 10.3390/ijms14059848
- Zylinska L, Gulczynska E, Kozaczuk A. Changes in erythrocyte glutathione and plasma membrane calcium pump in preterm newborns treated antenatally with MgSO4. Neonatology. 2008;94(4):272–278. doi: 10.1159/000151646
- Ogbodo UC, Emeh JK, Neboh EE, et al. Estimation of intracellular magnesium concentrations and membrane atpase activities in the red blood cells of normal and sickle cell subjects in Enugu, Southeast Nigeria. Int J Biol Med Res. 2010;1(4):149–152.
- DOI: https://doi.org/10.17816/ps707