Diffusion tensor imaging in injuries of the cervical spine in children

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Introduction. The technique of diffusion tensor imaging (DTI) is widely used in brain examination. However, DTI application for examining the spinal cord, especially in children, is not easy: small dimensions of the spinal cord with a typical low signal-to-noise ratio, artifacts from the respiration and pulsation of the heart and large vessels, as well as from swallowing movements. EPI sequences used to obtain diffusion indices cause eddy current distortions.

Objective. To study changes in  DTI parameters of the spinal cord in children with cervical spinal cord injury.

Material and methods. 56 children aged 2–17 years with cervical spine injury (CSI) and 20 children without CSI were examined with  Phillips Achieva3 T magnetic resonance scanner. The protocol consisted of sagittal STIR, sagittal and axial T1- and T2WI SE and axial DTI. To assess DTI, the following parameters were calculated: apparent diffusion coefficient (ADC), fractional anisotropy (FA), axial (AD) and radial (RD) diffusion coefficients.

Results. By ASIA criteria, 29 (51%) children out of 56 had CSI with neurological complications; 27 (49%) had no complications. Neurological dysfunction of degree A was in 13 patients; B – in 3; C – in 9; D – in 4; E – in 27. Average values of  diffusion in patients were: ADC = 0.74 ± 0.12 • 10−3 mm2/s−1, FA = 0.36 ± 0.07, BP = 1.15 + 0.28 • 10−3 mm2/s−1, RD = 0.52 + 0.32 • 10−3 mm2/s−1.

Conclusion. DTI can detect changes which cannot be detected by conventional MRI. Low ADC values in the acute injury may indicate spinal cord injury and predict a negative functional outcome.

About the authors

D. M. Dmitrenko

Clinical and Research Institute of Emergency Pediatric Surgery and Trauma

Email: fake@neicon.ru

Moscow, 119180

Russian Federation

T. A. Akhadov

Clinical and Research Institute of Emergency Pediatric Surgery and Trauma

Email: fake@neicon.ru

Moscow, 119180

Russian Federation

S. V. Meshcheryakov

Clinical and Research Institute of Emergency Pediatric Surgery and Trauma

Email: fake@neicon.ru

Moscow, 119180

Russian Federation

I. A. Melnikov

Clinical and Research Institute of Emergency Pediatric Surgery and Trauma

Email: fake@neicon.ru

Moscow, 119180

Russian Federation

O. V. Bozhko

Clinical and Research Institute of Emergency Pediatric Surgery and Trauma

Email: fake@neicon.ru

Moscow, 119180

Russian Federation

Zh. B. Semenova

Clinical and Research Institute of Emergency Pediatric Surgery and Trauma

Email: fake@neicon.ru

Moscow, 119180

Russian Federation

M. V. Ublinskiy

Clinical and Research Institute of Emergency Pediatric Surgery and Trauma

Author for correspondence.
Email: maxublinsk@mail.ru

Maxim V. Ublinskiy, MD, radiologist, researcher

Moscow, 119180

Russian Federation

N. A. Semenova

Clinical and Research Institute of Emergency Pediatric Surgery and Trauma

Email: fake@neicon.ru

Moscow, 119180

Russian Federation

A. V. Manzhurtsev

Clinical and Research Institute of Emergency Pediatric Surgery and Trauma

Email: fake@neicon.ru

Moscow, 119180

Russian Federation

M. I. Akhlebinina

Clinical and Research Institute of Emergency Pediatric Surgery and Trauma

Email: fake@neicon.ru

Moscow, 119180

Russian Federation

T. D. Kostikova

Clinical and Research Institute of Emergency Pediatric Surgery and Trauma

Email: fake@neicon.ru

Moscow, 119180

Russian Federation

D. N. Khusainova

Clinical and Research Institute of Emergency Pediatric Surgery and Trauma

Email: fake@neicon.ru

Moscow, 119180

Russian Federation

References

  1. Devivo M.J. Epidemiology of traumatic spinal cord injury: Trends and future implications. Spinal Cord. 2012; 50(5): 365-72. https//doi.org/10.1038/sc.2011.178
  2. Brown R.L., Brunn M.A., Garcia V.F. Cervical spine injuries in children: A review of 103 patients treated consecutively at a level 1 pediatric trauma center. Journal of Pediatric Surgery. 2001; 36(8): 1107-14. https//doi.org/10.1053/jpsu.2001.25665
  3. Osler T.M., Vane D.W., Tepas J.J., Rogers F.B., Shackford S.R., Badger G.J. Do pediatric trauma centers have better survival rates than adult trauma centers? An examination of the national pediatric trauma registry. Journal of Trauma - Injury, Infection and Critical Care. 2001; 50(1): 96-101. https//doi.org/10.1097/00005373-200101000-00017
  4. Cirak B., Ziegfeld S., Knight V.M., Chang D., Avellino A.M., Paidas C.N. Spinal Injuries in Children. Journal of Pediatric Surgery. 2004; 39(4): 607-12. https//doi.org/10.1016/j.jpedsurg.2003.12.011
  5. Залетина А.В., Виссарионов С.В., Баиндурашвили А.Г., Садовой М.А., Соловьева К.С., Купцова О.А. Структура повреждений позвоночника у детей в регионах Российской Федерации. Хирургия позвоночника. 2017; 14(4): 52-60. https//doi.org/10.14531/SS2017.4.52-60
  6. Ахадов Т.А., Панов В.О., Айхофф У. Травма спинного мозга и позвоночника и её последствия. In: Магнитно-резонансная томография спинного мозга и позвоночника. М.: 2000; 586-633.
  7. Yoo W.K., Kim T.H., Hai D.M., Sundaram S., Yang Y-M., Park M.S., Kim Y-C., et al. Correlation of magnetic resonance diffusion tensor imaging and clinical findings of cervical myelopathy. Spine Journal. 2013; 13(8): 867-76. https//doi.org/10.1016/j.spinee.2013.02.005
  8. Chen X., Kong C., Feng S., Guan H., Yu Z., Cui L., et al. Magnetic resonance diffusion tensor imaging of cervical spinal cord and lumbosacral enlargement in patients with cervical spondylotic myelopathy. Journal of Magnetic Resonance Imaging. 2016; 43(6): 1484-91. https//doi.org/10.1002/jmri.25109
  9. Liang W., Han B., Hai Y., Yin P., Chen Y., Zou C. Diffusion tensor imaging with fiber tracking provides a valuable quantitative and clinical evaluation for compressed lumbosacral nerve roots: a systematic review and meta-analysis. European Spine Journal. 2021; 30(4): 818-28. https//doi/org/10.1007/s00586-020-06556-8
  10. Mayer A.R., Ling J.M., Yang Z., Pena A., Yeo R.A., Klimaj S. Diffusion abnormalities in pediatric mild traumatic brain injury. Journal of Neuroscience. 2012; 32(50): 17961-9. https//doi.org/10.1523/JNEUROSCI.3379-12.2012
  11. Shah R.N., Allen J.W. Advances in Mild Traumatic Brain Injury Imaging Biomarkers. Current Radiology Reports. 2017; 5(4): 1-9. https//doi.org/10.1007/s40134-017-0210-3
  12. Basser P.J., Mattiello J., LeBihan D. MR diffusion tensor spectroscopy and imaging. Biophysical Journal. 1994; 66(1): 259-67. https//doi.org/10.1016/S0006-3495(94)80775-1.
  13. Shimada K., Tokioka T. Sequential MR studies of cervical cord injury: Correlation with neurological damage and clinical outcome. Spinal Cord. 1999; 37(6): 410-5. https//doi.org/10.1038/sj.sc.3100858.
  14. Takahashi M., Harada Y., Inoue H., Shimada K. Traumatic cervical cord injury at C3–4 without radiographic abnormalities: Correlation of magnetic resonance findings with clinical features and outcome. Journal of Orthopaedic Surgery. 2002; 10(2): 129-35. https//doi.org/10.1177/230949900201000205
  15. Liao C.C., Lui T.N., Chen L.R., Chuang C.C., Huang Y.C. Spinal cord injury without radiological abnormality in preschool-aged children: Correlation of magnetic resonance imaging findings with neurological outcomes. Journal of Neurosurgery. 2005; 103 PEDIAT(SUPPL. 1): 17-23. https//doi.org/10.3171/ped.2005.103.1.0017
  16. Miyanji F., Furlan J.C., Aarabi B., Arnold P.M., Fehlings M.G. Acute cervical traumatic spinal cord injury: MR imaging findings correlated with neurologic outcome - Prospective study with 100 consecutive patients. Radiology. 2007; 243(3): 820-7. https//doi.org/10.1148/radiol.2433060583
  17. Martin A.R., Aleksanderek I., Cohen-Adad J., Tarmohamed Z., Tetreault L., Smith N., et al. Translating state-of-the-art spinal cord MRI techniques to clinical use: A systematic review of clinical studies utilizing DTI, MT, MWF, MRS, and fMRI. NeuroImage: Clinical. 2016; 10: 192-238. https//doi.org/10.1016/j.nicl.2015.11.019
  18. Zaninovich O.A., Avila M.J., Kay M., Becker J.L., Hurlbert R.J., Martirosyan N.L. The role of diffusion tensor imaging in the diagnosis, prognosis, and assessment of recovery and treatment of spinal cord injury: A systematic review. Neurosurgical Focus. 2019; 46(3): E7. https//doi.org/10.3171/2019.1.FOCUS18591
  19. Banaszek A., Bladowska J., Podgórski P., Sąsiadek M.J. Role of Diffusion tensor MR imaging in degenerative Cervical Spine Disease: a Review of the Literature. Clinical Neuroradiology. 2016; 26(3): 265-76. https//doi.org/10.1007/s00062-015-0467-y
  20. Sun P., Murphy R.K.J., Gamble P., George A., Song S.K., Ray W.Z. Diffusion assessment of cortical changes, induced by traumatic spinal cord injury. Brain Sciences. 2017; 7(2): 21. https//doi.org/10.3390/brainsci7020021
  21. Wang K.Y., Idowu O., Thompson C.B., Orman G., Myers C., Riley L.H., et al. Tract-Specific Diffusion Tensor Imaging in Cervical Spondylotic Myelopathy Before and After Decompressive Spinal Surgery: Preliminary Results. Clinical Neuroradiology. 2017; 27(1): 61-9. https//doi.org/10.1007/s00062-015-0418-7

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c)

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies