The effectiveness of video-assisted thoracoscopic sanitation of the pleural cavity in combination with local proteolytic therapy in children with acute pleural empyema

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

BACKGROUND: A positive experience of the local applicationof proteolytic enzymes for treating purulent-inflammatory processes of various localizations has motivated the researchers to study this challenging topic and to assess the effectiveness of proteolytic enzymes in combination with video thoracoscopic sanitation and ultrasonic cavitation of the lungs and pleural cavity in children with acute pleural empyema.

AIM: To assess the effectiveness of complex treatment of acute pleural empyema in children.

METHODS: In 2020–2022, 26 children, aged 1–17 (15 boys, 57.7% and 11 girls, 42.3%), were under observation. All children were operated on for video thoracoscopic sanitation of the pleural cavity and ultrasonic cavitation of the lungs and pleural cavity. Patients were divided into two groups: main group — 12 (46.2%) children who were injected proteolytic enzymes into their pleural cavity intraoperatively and at the postoperative period; control group — 14 (53.8%) children who had no any proteolytic enzyme injections. The developed technique (Method for the treatment of acute pleural empyema in children, Patent RU2770663) was used at the surgical intervention.

RESULTS: The results obtained by the identified criteria have shown that proteolytic enzymes applied perioperatively is an effective technique what was confirmed by X-ray findings: fibrinothorax regression in the main group occurred earlier than in the control group by (2±0.4) days.

CONCLUSION: Thus, we consider that proteolytic enzymes used intraoperatively and at the early postoperative period in combination with video thoracoscopic sanitation and ultrasound cavitation of the lungs and pleural cavity is a promising and effective method for treating acute pleural empyema and can be recommended for implementation into clinical practice.

Full Text

Restricted Access

About the authors

Natusya K. Barova

Kuban State Medical University; Children's Regional Clinical Hospita

Email: nbarova@yandex.ru
ORCID iD: 0000-0001-5857-2296
SPIN-code: 5365-0960

MD, Cand. Sci. (Medicine)

Россия, 4 Mitrofan Sedina street, 350063 Krasnodar; Krasnodar

Ivan Kh. Egiev

Kuban State Medical University; Children's Regional Clinical Hospita

Email: ivan.egiev@mail.ru
ORCID iD: 0009-0000-5586-8657

MD

Россия, 4 Mitrofan Sedina street, 350063 Krasnodar; Krasnodar

Alina N. Grigorova

Kuban State Medical University

Author for correspondence.
Email: alina.mashchenko@mail.ru
ORCID iD: 0000-0001-5020-232X
SPIN-code: 1762-8310

MD, Cand. Sci. (Medicine)

Россия, 4 Mitrofan Sedina street, 350063 Krasnodar

Irma A. Ubilava

Children's Regional Clinical Hospita

Email: irmaybilava@mail.ru
ORCID iD: 0009-0002-0453-6913

MD

Россия, Krasnodar

Andrey E. Stryukovsky

Kuban State Medical University

Email: an-str@bk.ru
ORCID iD: 0000-0002-3267-2739
SPIN-code: 7303-4713

MD, Cand. Sci. (Medicine)

Россия, 350063, Краснодар, ул. Митрофана Седина, д. 4

Valery M. Nadgeriev

Kuban State Medical University

Email: vmn53@yandex.ru
SPIN-code: 8840-6369

MD, Cand. Sci. (Medicine)

Россия, 4 Mitrofan Sedina street, 350063 Krasnodar

Valery M. Starchenko

Kuban State Medical University

Email: mishana61@mail.ru
SPIN-code: 1802-3407

MD, Cand. Sci. (Medicine)

Россия, 4 Mitrofan Sedina street, 350063 Krasnodar

References

  1. Pritulo LF. Particular issues of acute purulent destructive pneumonia in children. Tavricheskiy mediko-biologicheskiy vestnik. 2010;13(4):138−143. (In Russ).
  2. Rokitsky MR. Surgical diseases of the lungs in children. Leningrad: Medicine; 1988. 286 р. (In Russ).
  3. Razumovsky AY, Allaberganov KO, Alkhasov AB. Video-assisted thoracoscopic surgery for the bullous form of purulent-inflammatory lung diseases in children. Russian Journal of Pediatric Surgery. 2005;(4):46−47. (In Russ).
  4. Krenke K, Sadowy E, Podsiadły E, et al. Etiology of parapneumonic effusion and pleural empyema in children. The role of conventional and molecular microbiological tests. Respir Med. 2016;(116):28–33. doi: 10.1016/j.rmed.2016.05.009
  5. Barova NK, Tarakanov VA, Ubilava IA, Eredzhibokova MYu. Complex therapy, rehabilitation in the treatment of acute destructive pneumonia in children. Russ J Pediat Surg Anesthesia Intensive Care. 2020;10(S):29. EDN: SOALDD
  6. Livingston MH, Mahant S, Connolly B, et al. Effectiveness of intrapleural tissue plasminogen activator and dornase alfa vs tissue plasminogen activator alone in children with pleural empyema: A randomized clinical trial. JAMA Pediatr. 2020;174(4):332–340. doi: 10.1001/jamapediatrics.2019.5863
  7. Domej W, Wenisch C, Demel U, Tilz GP. Vom pneumonischen Infiltrat zum parapneumonischen Erguss--vom Erguss zum Pleuraempyem: Internistische Aspekte parapneumonischer Ergussbildung und des Pleuraempyems. Wien Med Wochenschr. 2003;153(15-16):349−353. doi: 10.1007/s10354-003-0008-1
  8. Fedotova MA, Egiev IK. The method of combination of vat sanitation and the using of proteolytic enzymes in treatment of acute pleural empyema in children. Forcipe. 2022;5(S1):18. EDN: DAZZWM
  9. Arnold DT, Hamilton FW, Elvers KT, et al. Pleural fluid super levels predict the need for invasive management in parapneumonic effusions. Am J Respir Crit Care Med. 2020;201(12):1545−1553. doi: 10.1164/rccm.201911-2169OC
  10. Khasanov RR, Gumerov AA, Mamleev IA, Sataev VU. Economic efficacy of thoracoscopic treatment for pleural empyema in children. N.I. Pirogov J Surg. 2009;(11):42–47. EDN: LBEJNL
  11. Barova NK, Tarakanov VA, Cipris AA, et al. The modern medical technologies for treatment of acute destructive pneumonia in children. Kuban Sci Med Bulletin. 2013;(7):58−59. EDN: RSKHIJ
  12. Kashin AS, Mamleev IA, Sataev VU, et al. Diagnostics and thoracoscopic treatment of pleural empyema in younger children. N.I. Pirogov J Surg. 2009;(11):38−41 EDN: LBEJMR
  13. Balfour-Lynn IM, Abrahamson E, Cohen G, et al. BTS guidelines for the management of pleural infection in children. Thorax. 2005;60(Suppl 1):11–21. doi: 10.1136/thx.2004.030676
  14. Egiev IKh, Tarakanov VA, Barova NK, Ubilava IA. Surgical treatment of acute pleural empyema in children using the method of combination of videothoracoscopic sanation and local application of proteolytic enzymes. Russ J Pediatr Surg Anesthesia Intensive Care. 2022;12(S):56. EDN: VQYABV
  15. Razumovsky AY, Allaberganov KO, Alkhasov AB. Thoracoscopic surgeries for complicated forms of purulent inflammatory lung diseases in children. Ann Surg. 2006;(6):43−45. (In Russ).
  16. Altmann ES, Crossingham I, Wilson S, Davies HR. Intra-pleural fibrinolytic therapy versus placebo, or a different fibrinolytic agent, in the treatment of adult parapneumonic effusions and empyema. Cochrane Database Syst Rev. 2019.2019;(10):CD002312. doi: 10.1002/14651858.CD002312.pub4
  17. Singh G, Pitoyo CW, Nasir AU, et al. Update on the role of intrapleural fibrinolytic therapy in the management of complicated parapneumonic effusions and empyema. Acta Med Indones. 2012;44(3):258−264.
  18. Majid A, Ochoa S, Chatterji S, et al. Safety and efficacy of tissue plasminogen activator and DNase for complicated pleural effusions secondary to abdominal pathology. Ann Am Thorac Soc. 2017;14(3):342−346. doi: 10.1513/AnnalsATS.201608-594BC
  19. Scharm SC, Dettmer S. Erkrankungen der Pleura, der Thoraxwand und des Zwerchfells. Radiologe. 2022;62(2):91−98. doi: 10.1007/s00117-021-00958-5
  20. Bataev SM, Ignatyev RO, Zurbaev NT, et al. Hydrosurgical technology in the treatment of a child with complicated pneumonia secondary to scarlet fever. Pediatriya: Zhurnal imeni G.N. Speranskogo. 2018;97(2):113−117. EDN: YTCBBG doi: 10.24110/0031-403X-2018-97-2-113-117
  21. Merry C.M., Bufo A.J., Shah R.S. Early defi nitive intervention by thoracoscopy in pediatric empyema. J Pediatr Surg. 1999;34:178–181.
  22. Kashin AS, Mamleev IA, Sataev VU, et al. Thoracoscopic treatment of pulmonary-pleural complications of acute necrotizing pneumonia in new born and infants. Children's Med North-West. 2012;3(4):23−28. EDN: RUESSR
  23. Amarantov D.G. Programmed staged thoracoscopy in the treatment of patients with acute para- and metapneumonic pleural empyema [dissertation abstract]. Saratov, 2005. 21 p. (In Russ.)"
  24. Bataev SM, Zurbaev NT, Molotov RS, et al. The first experience of the use of hydro-surgical technologies in the treatment of children with pulmatic-pleural complications of destructive pneumonia. N.I. Pirogov J Surg. 2019;(7):15−23. EDN: AMMQBC doi: 10.17116/hirurgia201907115
  25. Knisely BL, Broderick LS, Kuhlman JE. MR imaging of the pleura and chest wall. Magn Reson Imaging Clin N Am. 2000;8(1):125−141.
  26. Ravaglia C, Gurioli C, Tomassetti S, et al. Is medical thoracoscopy efficient in the management of multiloculated and organized thoracic empyema? Respiration. 2012;84(3):219−224. doi: 10.1159/000339414
  27. Tassi GF, Marchetti GP, Pinelli V, Chiari S. Practical management of pleural empyema. Monaldi Arch Chest Dis. 2010;73(3):124−129. doi: 10.4081/monaldi.2010.296

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Intraoperative picture of pleural cavity revision with subsequent mechanical separation of pleural adhesions and moorings.

Download (179KB)
3. Fig. 2. Intraoperative picture demonstrating Khymopsin effectiveness.

Download (221KB)
4. Fig. 3. Terms of pain relief: data are presented as absolute and relative (in parentheses) numbers of patients.

Download (68KB)
5. Fig. 4. Terms of hyperthermia control: data are presented as absolute and relative (in parentheses) numbers of patients.

Download (81KB)
6. Fig. 5. Terms of pleural effusion relief: data are presented as absolute and relative (in parentheses) numbers of patients.

Download (89KB)
7. Fig. 6. Terms of respiratory failure control: data are presented as absolute and relative (in parentheses) numbers of patients.

Download (84KB)
8. Fig. 7. Time frame for complete lung reexpansion: data are presented as absolute and relative (in parentheses) number of patients.

Download (69KB)
9. Fig. 8. Duration of antibacterial therapy: data are presented as absolute and relative (in parentheses) number of patients.

Download (80KB)
10. Fig. 9. Radiographs of the chest organs of patient K., 5 years old (main group): a — before surgery, b — on day 1 after surgery; c — on day 7 after surgery.

Download (214KB)
11. Fig. 10. Radiographs of the chest organs of patient G., 3 years old (control group): a — before surgery, b — on day 1 after surgery; c — on day 7 after surgery.

Download (234KB)

Copyright (c) 2024 Barova N.K., Egiev I.K., Grigorova A.N., Ubilava I.A., Stryukovsky A.E., Nadgeriev V.M., Starchenko V.M.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies