Biomarkers of renal parenchymal damage in young children with congenital hydronephrosis: literature review

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Enlargement of the renal cavity system in a fetus is revealed at prenatal ultrasound in 1–5% of cases and can be caused by congenital hydronephrosis due to pelvic-ureteral junction obstruction, which is one of the most common nosologies in the structure of obstructive uropathies in childhood. A high risk of renal function decrease at the preclinical stage of disease development dictates a need to create highly informative diagnostic programs and treatment algorithms aimed at preventing complications. In this review, we discuss results of studies on diagnostic and prognostic value of cytokine biomarkers which are of a great interest in congenital hydronephrosis in young children. They include: kidney injury molecule-1, vascular endothelial growth factor-A, monocyte chemoattractant protein-1, neutrophil gelatinase-associated lipocalin, interleukin-1. Literature search for this review was made in Web of Science, PubMed, Russian Science Citation Index, CyberLeninka, Scopus databases.

Full Text

Restricted Access

About the authors

Vladislav N. Klimov

Saratov State Medical University named after V.I. Razumovsky

Author for correspondence.
Email: klimov.surg@mail.ru
ORCID iD: 0000-0002-1556-6010
SPIN-code: 9696-4736
Россия, Saratov

Lyudmila A. Deryugina

Saratov State Medical University named after V.I. Razumovsky

Email: dludmila1@yandex.ru
ORCID iD: 0000-0001-5525-8648
SPIN-code: 8583-6925

MD, Dr. Sci. (Medicine), Professor

Россия, Saratov

Elena I. Krasnova

Saratov State Medical University named after V.I. Razumovsky

Email: krasnovasaratov@yandex.ru
ORCID iD: 0000-0003-1060-9517
SPIN-code: 5483-0762

MD, Cand. Sci. (Medicine), Assoc. Professor

Россия, Saratov

Era B. Popyhova

Saratov State Medical University named after V.I. Razumovsky

Email: popyhovaeb@mail.ru
ORCID iD: 0000-0002-7662-4755
SPIN-code: 7810-3930

Cand. Sci. (Biology)

Россия, Saratov

Dzhalal F. Kazymov

Saratov State Medical University named after V.I. Razumovsky

Email: k.jalal@mail.ru
ORCID iD: 0009-0006-9835-0149
Россия, Saratov

References

  1. Ignatova MS, Veltischev YuE. Pediatric nephrology. A guide for doctors. Moscow: Medicine; 1982. 528 p. (In Russ.)
  2. Dos Santos Junior AC, de Miranda DM, Simões e Silva AC. Congenital anomalies of the kidney and urinary tract: An embryogenetic review. Birth Defects Res C Embryo Today. 2014;102(4):374–381. doi: 10.1002/bdrc.21084
  3. Humphreys BD. Mechanisms of renal fibrosis. Annu Rev Physiol. 2018;(80):309–326. doi: 10.1146/annurev-physiol-022516-034227
  4. Kutyrlo IE, Savenkova ND. CAKUT-syndrome in children. Nephrology. 2017;21(3):18–24. EDN: ZBHAMJ doi: 10.24884/1561-6274-2017-3-18-24
  5. Ingelfinger JR, Kalantar-Zadeh K, Schaefer F. Averting the legacy of kidney disease-focus on childhood. Nephrology. 2016;20(2):10–17. EDN: VPUYTP
  6. Chou CY, Chen LC, Cheong ML, Tsai MS. Frequency of postnatal hydronephrosis in infants with a renal anterior-posterior pelvic diameter >4 mm on midtrimester ultrasound. Taiwan J Obstet Gynecol. 2015;54(5):554–558.
  7. Chiodini B, Ghassemi M, Khelif K, Ismaili K. Clinical outcome of children with antenatally diagnosed hydronephrosis. Front Pediatr. 2019;7:103. doi: 10.3389/fped.2019.00103
  8. Amiri R, Hosseini H, Sanaei Z, et al. Urinary neutrophil glatinase-associated lipocalin level (uNGAL) may predict the severity of congenital hydronephrosis in infants. Am J Clin Exp Immunol. 2021;10(1):1–7.
  9. Kohno M, Ogawa T, Kojima Y, et al. Pediatric congenital hydronephrosis (ureteropelvic junction obstruction): Medical management guide. Int J Urol. 2020;27(5):369–376.
  10. Onen A. Grading of hydronephrosis: An ongoing challenge. Front Pediatr. 2020;8:458. doi: 10.3389/fped.2020.00458
  11. Chen L, Su W, Chen H, et al. Proteomics for biomarker identification and clinical application in kidney disease. Adv Clin Chem. 2018;85:91–113. doi: 10.1016/bs.acc.2018.02.005
  12. Chevalier RL. Congenital urinary tract obstruction: The long view. Adv Chronic Kidney Dis. 2015;22(4):312–319. doi: 10.1053/j.ackd.2015.01.012
  13. Vechkanova NA, Stepanov NYu, Mashnin IV, et al. Studying of the system IL-1 and G-CSF in hydronephrosis as a perspective of creating new diagnostic test systems. Bull Sci Practice. 2019;5(3): 64–68. EDN: ZAAQXB doi: 10.33619/2414-2948/40/07
  14. Karakus S, Oktar T, Kucukgergin C, et al. Urinary IP-10, MCP-1, NGAL, cystatin-C, and KIM-1 levels in prenatally diagnosed unilateral hydronephrosis: The search for an ideal biomarker. Urology. 2016;87:185–192. doi: 10.1016/j.urology.2015.09.007
  15. Magalhães P, Schanstra JP, Carrick E, et al. Urinary biomarkers for renal tract malformations. Expert Rev Proteomics. 2016;13(12):1121–1129. doi: 10.1080/14789450.2016.1254555
  16. Lucarelli G, Mancini V, Galleggiante V, et al. Emerging urinary markers of renal injury in obstructive nephropathy. Biomed Res Int. 2014;2014:303298. doi: 10.1155/2014/303298
  17. Mussap M, Noto A, Fanos V, van Den Anker JN. Emerging biomarkers and metabolomics for assessing toxic nephropathy and acute kidney injury (AKI) in neonatology. Biomed Res Int. 2014;2014:602526. doi: 10.1155/2014/602526
  18. Suchiang B, Pathak M, Saxena R, et al. Role of urinary neutrophil gelatinase-associated lipocalin (NGAL), monocyte chemoattractant protein-1 (MCP-1), and interleukin-6 (IL-6) as biomarkers in pediatric patients with hydronephrosis. Pediatr Surg Int. 2022;38(11): 1635–1641. doi: 10.1007/s00383-022-05207-x
  19. Yang Y, Hou Y, Wang CL, Ji SJ. Renal expression of epidermal growth factor and transforming growth factor-beta1 in children with congenital hydronephrosis. Urology. 2006;67(4):817–822. doi: 10.1016/j.urology.2005.10.062
  20. Kostic D, dos Santos Beozzo GP, do Couto SB, et al. First-year profile of biomarkers for early detection of renal injury in infants with congenital urinary tract obstruction. Pediatr Nephrol. 2019;34(6):1117–1128. EDN: DHCDVQ doi: 10.1007/s00467-019-4195-4
  21. Stepanova TV, Ivanov AN, Tereshkina NE, et al. Markers of endothelial dysfunction: Pathogenetic role and diagnostic significance. Russ Clin Laboratory Diagnostics. 2019;64(1):34–41. EDN: TDAUVN doi: 10.18821/0869-2084-2019-64-1-34-41
  22. Amiri R, Faradmal J, Rezaie B, et al. Evaluation of urinary neutrophil gelatinase-associated lipocalin as a biomarker in pediatric vesicoureteral reflux assessment. Iran J Kidney Dis. 2020;14(5):373–379.
  23. Jackson L, Woodward M, Coward RJ. The molecular biology of pelvi-ureteric junction obstruction. Pediatr Nephrol. 2018; 33(4): 553–571. EDN: BWADVK doi: 10.1007/s00467-017-3629-0
  24. Pope JC, Showalter PR, Milam DF, Brock JW. Intrapelvic pressure monitoring in the partially obstructed porcine kidney. Urology. 1994;44(4):565–571. doi: 10.1016/s0090-4295(94)80061-8
  25. Chevalier RL. The proximal tubule is the primary target of injury and progression of kidney disease: Role of the glomerulotubular junction. Am J Physiol Renal Physiol. 2016;311(1):145–161. doi: 10.1152/ajprenal.00164.2016
  26. Bagińska J, Korzeniecka-Kozerska A. Are tubular injury markers NGAL and KIM-1 useful in pediatric neurogenic bladder? J Clin Med. 2021;10(11):2353. doi: 10.3390/jcm10112353
  27. Liu BC, Tang TT, Lv LL, Lan HY. Renal tubule injury: A driving force toward chronic kidney disease. Kidney Int. 2018;93(3):568–579. EDN: YENEMP doi: 10.1016/j.kint.2017.09.033
  28. Chen J, Li D. Telbivudine attenuates UUO-induced renal fibrosis via TGF-β/Smad and NF-κB signaling. Int Immunopharmacol. 2018;55:1–8. doi: 10.1016/j.intimp.2017.11.043
  29. Madsen MG. Urinary biomarkers in hydronephrosis. Dan Med J. 2013;60(2):B4582.
  30. Holzman SA, Braga LH, Zee RS, et al. Risk of urinary tract infection in patients with hydroureter: An analysis from the Society of Fetal Urology Prenatal Hydronephrosis Registry. J Pediatr Urol. 2021;17(6):775–781. doi: 10.1016/j.jpurol.2021.09.001
  31. Noyan A, Parmaksiz G, Dursun H, et al. Urinary NGAL, KIM-1 and L-FABP concentrations in antenatal hydronephrosis. J Pediatr Urol. 2015;11(5):249.e1–249.e2496. doi: 10.1016/j.jpurol.2015.02.021
  32. Wasilewska A, Taranta-Janusz K, Dębek W, et al. KIM-1 and NGAL: New markers of obstructive nephropathy. Pediatr Nephrol. 2011;26(4):579–586. EDN: TPQVDD doi: 10.1007/s00467-011-1773-5
  33. Rafiei A, Mohammadjafari H, Bazi S, et al. Urinary neutrophil gelatinase-associated lipocalin (NGAL) might be an independent marker for anticipating scar formation in children with acute pyelonephritis. J Renal Inj Prev. 2015;4:39–44. doi: 10.12861/jrip.2015.09
  34. Magyar Z, Schönleber J, Romics M, et al. Expression of VEGF in neonatal urinary obstruction: does expression of VEGF predict hydronephrosis? Med Sci Monit. 2015;(21):1319–1323. doi: 10.12659/MSM.894133
  35. Morozov DA, Krasnova EI, Deryugina LA, et al. The diagnostic value of biomarkers of inflammation, angiogenesis and fibrogenesis to assess the severity of urodynamic obstruction in children with congenital megaureter. Saratov J Med Sci Res. 2012;8(4):996–1001. (In Russ.) EDN: PVFXFZ
  36. Hernandez-Santana YE, Giannoudaki E, Leon G, et al. Current perspectives on the interleukin-1 family as targets for inflammatory disease // Eur J Immunol. 2019;49(9):1306–1320. EDN: KJHIUD doi: 10.1002/eji.201848056
  37. Boraschi D, Italiani P, Weil S, Martin MU. The family of the interleukin-1 receptors. Immunol Rev. 2018;281(1):197–232. EDN: YESKDB doi: 10.1111/imr.12606
  38. Makarova TP, Ishbuldina AV. Cytokines and progressive chronic kidney disease in children. Russ Bull Perinatology Pediatrics. 2021;66:(4):25–31. EDN: UHEGGS doi: 10.21508/1027-4065-2021-66-4-25-31
  39. Haller H, Bertram A, Nadrowitz F, Menne J. Monocyte chemoattractant protein-1 and the kidney. Curr Opin Nephrol Hypertens. 2016;25(1):42–49. doi: 10.1097/MNH.0000000000000186
  40. Morozova OL, Morozov DA, Lakomova DY, et al. Reflux nephropathy in children: Early diagnosis and monitoring. Urologiia. 2017;(4):107–112. EDN: ZFVHVF doi: 10.18565/urol.2017.4.107-112
  41. Bobkova IN, Tchebotareva NV, Kozlovskaya LV, et al. Determination of urinary excretion of monocyte chemotactic protein-1 (MCP-1) and transforming growth factor-β1 (TGF-β1) is an invasive method of assessment of tubulointerstitial fibrosis with chronic glomerulonephritis. Nephrology. 2006;10(4):49–55. EDN: JURDCN
  42. Batiushin MM, Gadaborsheva KhZ. Monocyte chemoattractant protein-1: Its role in the development of tubulointerstitial fibrosis in nephropathies. Medical News of North Caucasus. 2017;12(2): 234–239. EDN: ZCGGTV doi: 10.14300/mnnc.2017.12067
  43. Mohammadjafari H, Rafiei A, Mousavi SA, et al. Role of urinary levels of endothelin-1, monocyte chemotactic peptide-1, and N-acetyl glucosaminidase in predicting the severity of obstruction in hydronephrotic neonates. Korean J Urol. 2014;55(10):670–676. doi: 10.4111/kju.2014.55.10.670
  44. Ix JH, Shlipak MG. The promise of tubule biomarkers in kidney disease: A review. Am J Kidney Dis. 2021;78(5):719–727. doi: 10.1053/j.ajkd.2021.03.026
  45. Karmakova ТА, Sergeeva NS, Kanukoev КYu, et al. Kidney injury molecule 1 (KIM-1): A multifunctional glycoprotein and biological marker (review). Sovremennye tehnologii v medicine. 2021;13(3): 64–80. EDN: IONQXI doi: 10.17691/stm2021.13.3.08
  46. Humphreys BD, Xu F, Sabbisetti V, et al. Chronic epithelial kidney injury molecule-1 expression causes murine kidney fibrosis. J Clin Invest. 2013;123(9):4023–4035. doi: 10.1172/JCI45361
  47. Yiğit D, Taşkınlar H, Avlan D. Can serum neutrophil gelatinase associated lipocalin and kidney injury molecule-1 help in decision making for surgery in antenatally dedected hydronephrosis. J Pediatr Urol. 2021;17(1):71.e1–71.e7. doi: 10.1016/j.jpurol.2020.10.013
  48. Olvera-Posada D, Dayarathna T, Dion M, et al. KIM-1 is a potential urinary biomarker of obstruction: Results from a prospective cohort study. J Endourol. 2017;31(2):111–118. doi: 10.1089/end.2016.0215
  49. Zwiers AJ, Cransberg K, de Rijke YB, et al. Reference ranges for serum β-trace protein in neonates and children younger than 1 year of age. Clin Chem Lab Med. 2014;52(12):1815–1821. doi: 10.1515/cclm-2014-0371
  50. Endre ZH, Pickering JW. Acute kidney injury clinical trial design: Old problems, new strategies. Pediatr Nephrol. 2013;28(2):207–217. EDN: FLUGWS doi: 10.1007/s00467-012-2171-3
  51. Parmaksiz G, Noyan A, Dursun H, et al. Role of new biomarkers for predicting renal scarring in vesicoureteral reflux: NGAL, KIM-1, and L-FABP. Pediatr Nephrol. 2016;31(1):97–103. EDN: VJKCEO doi: 10.1007/s00467-015-3194-3
  52. Forster CS, Davarajan P. Neutrophil gelatinase-associated lipocalin: Utility in urologic conditions. Pediatr Nephrol. 2017;32(3):377–381. doi: 10.1007/s00467-016-3540-0
  53. Hwang SH, Lee YM, Choi Y, et al. Role of human primary renal fibroblast in TGF-β1-mediated fibrosis-mimicking devices. Int J Mol Sci. 2021;22(19):10758. doi: 10.3390/ijms221910758
  54. Loboda A, Sobczak M, Jozkowicz A, Dulak J. TGF-β1/Smads and miR-21 in renal fibrosis and inflammation. Mediators Inflamm. 2016;2016:8319283. doi: 10.1155/2016/8319283
  55. Semeshina OV, Luchaninova VN, Nee A, et al. Diagnostic significance of blood serum cytokine profile for chronic kidney disease in children. Nephrology. 2018;22(4):81–89. EDN: UWOSNR doi: 10.24884/1561-6274-2018-22-4-81-89
  56. Merrikhi A, Bahraminia E. Association of urinary transforming growth factor-β1 with the ureteropelvic junction obstruction. Adv Biomed Res. 2014;3:123. doi: 10.4103/2277-9175.133196
  57. Li J, Li XL, Li CQ. Immunoregulation mechanism of VEGF signaling pathway inhibitors and its efficacy on the kidney. Am J Med Sci. 2023;366(6):404–412. EDN: CSQTDN doi: 10.1016/j.amjms.2023.09.005
  58. Costache MI, Mihai I, Iordache S, et al. VEGF expression in pancreatic cancer and other malignancies: A review of the literature. Rom J Intern Med. 2015;53(3):199–208. doi: 10.1515/rjim-2015-0027
  59. Chebotareva NV, Bobkova IN, Neprintseva NV, et al. Urinary biomarkers for podocyte injury: Significance for evaluating the course and prognosis of chronic glomerulonephritis. Ther Arch. 2015;87(6):34–39. EDN: SJRDHL doi: 10.17116/terarkh201587634-39
  60. Burt LE, Forbes MS, Thornhill BA, et al. Renal vascular endothelial growth factor in neonatal obstructive nephropathy. II. Exogenous VEGF. Am J Physiol Renal Physiol. 2007;292(1):168–174. doi: 10.1152/ajprenal.00294.2005
  61. Burt LE, Forbes MS, Thornhill BA, et al. Renal vascular endothelial growth factor in neonatal obstructive nephropathy. I. Endogenous VEGF. Am J Physiol Renal Physiol. 2007;292(1):158–167. doi: 10.1152/ajprenal.00293.200

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Klimov V.N., Deryugina L.A., Krasnova E.I., Popyhova E.B., Kazymov D.F.

License URL: https://eco-vector.com/for_authors.php#07

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies