Biomarkers of renal parenchymal damage in young children with congenital hydronephrosis: literature review
- Authors: Klimov V.N.1, Deryugina L.A.1, Krasnova E.I.1, Popyhova E.B.1, Kazymov D.F.1
-
Affiliations:
- Saratov State Medical University named after V.I. Razumovsky
- Issue: Vol 28, No 5 (2024)
- Pages: 482-493
- Section: SCIENTIFIC REVIEWS
- Submitted: 02.03.2024
- Accepted: 23.09.2024
- Published: 11.11.2024
- URL: https://jps-nmp.ru/jour/article/view/795
- DOI: https://doi.org/10.17816/ps795
- ID: 795
Cite item
Abstract
Enlargement of the renal cavity system in a fetus is revealed at prenatal ultrasound in 1–5% of cases and can be caused by congenital hydronephrosis due to pelvic-ureteral junction obstruction, which is one of the most common nosologies in the structure of obstructive uropathies in childhood. A high risk of renal function decrease at the preclinical stage of disease development dictates a need to create highly informative diagnostic programs and treatment algorithms aimed at preventing complications. In this review, we discuss results of studies on diagnostic and prognostic value of cytokine biomarkers which are of a great interest in congenital hydronephrosis in young children. They include: kidney injury molecule-1, vascular endothelial growth factor-A, monocyte chemoattractant protein-1, neutrophil gelatinase-associated lipocalin, interleukin-1. Literature search for this review was made in Web of Science, PubMed, Russian Science Citation Index, CyberLeninka, Scopus databases.
Full Text
About the authors
Vladislav N. Klimov
Saratov State Medical University named after V.I. Razumovsky
Author for correspondence.
Email: klimov.surg@mail.ru
ORCID iD: 0000-0002-1556-6010
SPIN-code: 9696-4736
Россия, Saratov
Lyudmila A. Deryugina
Saratov State Medical University named after V.I. Razumovsky
Email: dludmila1@yandex.ru
ORCID iD: 0000-0001-5525-8648
SPIN-code: 8583-6925
MD, Dr. Sci. (Medicine), Professor
Россия, SaratovElena I. Krasnova
Saratov State Medical University named after V.I. Razumovsky
Email: krasnovasaratov@yandex.ru
ORCID iD: 0000-0003-1060-9517
SPIN-code: 5483-0762
MD, Cand. Sci. (Medicine), Assoc. Professor
Россия, SaratovEra B. Popyhova
Saratov State Medical University named after V.I. Razumovsky
Email: popyhovaeb@mail.ru
ORCID iD: 0000-0002-7662-4755
SPIN-code: 7810-3930
Cand. Sci. (Biology)
Россия, SaratovDzhalal F. Kazymov
Saratov State Medical University named after V.I. Razumovsky
Email: k.jalal@mail.ru
ORCID iD: 0009-0006-9835-0149
Россия, Saratov
References
- Ignatova MS, Veltischev YuE. Pediatric nephrology. A guide for doctors. Moscow: Medicine; 1982. 528 p. (In Russ.)
- Dos Santos Junior AC, de Miranda DM, Simões e Silva AC. Congenital anomalies of the kidney and urinary tract: An embryogenetic review. Birth Defects Res C Embryo Today. 2014;102(4):374–381. doi: 10.1002/bdrc.21084
- Humphreys BD. Mechanisms of renal fibrosis. Annu Rev Physiol. 2018;(80):309–326. doi: 10.1146/annurev-physiol-022516-034227
- Kutyrlo IE, Savenkova ND. CAKUT-syndrome in children. Nephrology. 2017;21(3):18–24. EDN: ZBHAMJ doi: 10.24884/1561-6274-2017-3-18-24
- Ingelfinger JR, Kalantar-Zadeh K, Schaefer F. Averting the legacy of kidney disease-focus on childhood. Nephrology. 2016;20(2):10–17. EDN: VPUYTP
- Chou CY, Chen LC, Cheong ML, Tsai MS. Frequency of postnatal hydronephrosis in infants with a renal anterior-posterior pelvic diameter >4 mm on midtrimester ultrasound. Taiwan J Obstet Gynecol. 2015;54(5):554–558.
- Chiodini B, Ghassemi M, Khelif K, Ismaili K. Clinical outcome of children with antenatally diagnosed hydronephrosis. Front Pediatr. 2019;7:103. doi: 10.3389/fped.2019.00103
- Amiri R, Hosseini H, Sanaei Z, et al. Urinary neutrophil glatinase-associated lipocalin level (uNGAL) may predict the severity of congenital hydronephrosis in infants. Am J Clin Exp Immunol. 2021;10(1):1–7.
- Kohno M, Ogawa T, Kojima Y, et al. Pediatric congenital hydronephrosis (ureteropelvic junction obstruction): Medical management guide. Int J Urol. 2020;27(5):369–376.
- Onen A. Grading of hydronephrosis: An ongoing challenge. Front Pediatr. 2020;8:458. doi: 10.3389/fped.2020.00458
- Chen L, Su W, Chen H, et al. Proteomics for biomarker identification and clinical application in kidney disease. Adv Clin Chem. 2018;85:91–113. doi: 10.1016/bs.acc.2018.02.005
- Chevalier RL. Congenital urinary tract obstruction: The long view. Adv Chronic Kidney Dis. 2015;22(4):312–319. doi: 10.1053/j.ackd.2015.01.012
- Vechkanova NA, Stepanov NYu, Mashnin IV, et al. Studying of the system IL-1 and G-CSF in hydronephrosis as a perspective of creating new diagnostic test systems. Bull Sci Practice. 2019;5(3): 64–68. EDN: ZAAQXB doi: 10.33619/2414-2948/40/07
- Karakus S, Oktar T, Kucukgergin C, et al. Urinary IP-10, MCP-1, NGAL, cystatin-C, and KIM-1 levels in prenatally diagnosed unilateral hydronephrosis: The search for an ideal biomarker. Urology. 2016;87:185–192. doi: 10.1016/j.urology.2015.09.007
- Magalhães P, Schanstra JP, Carrick E, et al. Urinary biomarkers for renal tract malformations. Expert Rev Proteomics. 2016;13(12):1121–1129. doi: 10.1080/14789450.2016.1254555
- Lucarelli G, Mancini V, Galleggiante V, et al. Emerging urinary markers of renal injury in obstructive nephropathy. Biomed Res Int. 2014;2014:303298. doi: 10.1155/2014/303298
- Mussap M, Noto A, Fanos V, van Den Anker JN. Emerging biomarkers and metabolomics for assessing toxic nephropathy and acute kidney injury (AKI) in neonatology. Biomed Res Int. 2014;2014:602526. doi: 10.1155/2014/602526
- Suchiang B, Pathak M, Saxena R, et al. Role of urinary neutrophil gelatinase-associated lipocalin (NGAL), monocyte chemoattractant protein-1 (MCP-1), and interleukin-6 (IL-6) as biomarkers in pediatric patients with hydronephrosis. Pediatr Surg Int. 2022;38(11): 1635–1641. doi: 10.1007/s00383-022-05207-x
- Yang Y, Hou Y, Wang CL, Ji SJ. Renal expression of epidermal growth factor and transforming growth factor-beta1 in children with congenital hydronephrosis. Urology. 2006;67(4):817–822. doi: 10.1016/j.urology.2005.10.062
- Kostic D, dos Santos Beozzo GP, do Couto SB, et al. First-year profile of biomarkers for early detection of renal injury in infants with congenital urinary tract obstruction. Pediatr Nephrol. 2019;34(6):1117–1128. EDN: DHCDVQ doi: 10.1007/s00467-019-4195-4
- Stepanova TV, Ivanov AN, Tereshkina NE, et al. Markers of endothelial dysfunction: Pathogenetic role and diagnostic significance. Russ Clin Laboratory Diagnostics. 2019;64(1):34–41. EDN: TDAUVN doi: 10.18821/0869-2084-2019-64-1-34-41
- Amiri R, Faradmal J, Rezaie B, et al. Evaluation of urinary neutrophil gelatinase-associated lipocalin as a biomarker in pediatric vesicoureteral reflux assessment. Iran J Kidney Dis. 2020;14(5):373–379.
- Jackson L, Woodward M, Coward RJ. The molecular biology of pelvi-ureteric junction obstruction. Pediatr Nephrol. 2018; 33(4): 553–571. EDN: BWADVK doi: 10.1007/s00467-017-3629-0
- Pope JC, Showalter PR, Milam DF, Brock JW. Intrapelvic pressure monitoring in the partially obstructed porcine kidney. Urology. 1994;44(4):565–571. doi: 10.1016/s0090-4295(94)80061-8
- Chevalier RL. The proximal tubule is the primary target of injury and progression of kidney disease: Role of the glomerulotubular junction. Am J Physiol Renal Physiol. 2016;311(1):145–161. doi: 10.1152/ajprenal.00164.2016
- Bagińska J, Korzeniecka-Kozerska A. Are tubular injury markers NGAL and KIM-1 useful in pediatric neurogenic bladder? J Clin Med. 2021;10(11):2353. doi: 10.3390/jcm10112353
- Liu BC, Tang TT, Lv LL, Lan HY. Renal tubule injury: A driving force toward chronic kidney disease. Kidney Int. 2018;93(3):568–579. EDN: YENEMP doi: 10.1016/j.kint.2017.09.033
- Chen J, Li D. Telbivudine attenuates UUO-induced renal fibrosis via TGF-β/Smad and NF-κB signaling. Int Immunopharmacol. 2018;55:1–8. doi: 10.1016/j.intimp.2017.11.043
- Madsen MG. Urinary biomarkers in hydronephrosis. Dan Med J. 2013;60(2):B4582.
- Holzman SA, Braga LH, Zee RS, et al. Risk of urinary tract infection in patients with hydroureter: An analysis from the Society of Fetal Urology Prenatal Hydronephrosis Registry. J Pediatr Urol. 2021;17(6):775–781. doi: 10.1016/j.jpurol.2021.09.001
- Noyan A, Parmaksiz G, Dursun H, et al. Urinary NGAL, KIM-1 and L-FABP concentrations in antenatal hydronephrosis. J Pediatr Urol. 2015;11(5):249.e1–249.e2496. doi: 10.1016/j.jpurol.2015.02.021
- Wasilewska A, Taranta-Janusz K, Dębek W, et al. KIM-1 and NGAL: New markers of obstructive nephropathy. Pediatr Nephrol. 2011;26(4):579–586. EDN: TPQVDD doi: 10.1007/s00467-011-1773-5
- Rafiei A, Mohammadjafari H, Bazi S, et al. Urinary neutrophil gelatinase-associated lipocalin (NGAL) might be an independent marker for anticipating scar formation in children with acute pyelonephritis. J Renal Inj Prev. 2015;4:39–44. doi: 10.12861/jrip.2015.09
- Magyar Z, Schönleber J, Romics M, et al. Expression of VEGF in neonatal urinary obstruction: does expression of VEGF predict hydronephrosis? Med Sci Monit. 2015;(21):1319–1323. doi: 10.12659/MSM.894133
- Morozov DA, Krasnova EI, Deryugina LA, et al. The diagnostic value of biomarkers of inflammation, angiogenesis and fibrogenesis to assess the severity of urodynamic obstruction in children with congenital megaureter. Saratov J Med Sci Res. 2012;8(4):996–1001. (In Russ.) EDN: PVFXFZ
- Hernandez-Santana YE, Giannoudaki E, Leon G, et al. Current perspectives on the interleukin-1 family as targets for inflammatory disease // Eur J Immunol. 2019;49(9):1306–1320. EDN: KJHIUD doi: 10.1002/eji.201848056
- Boraschi D, Italiani P, Weil S, Martin MU. The family of the interleukin-1 receptors. Immunol Rev. 2018;281(1):197–232. EDN: YESKDB doi: 10.1111/imr.12606
- Makarova TP, Ishbuldina AV. Cytokines and progressive chronic kidney disease in children. Russ Bull Perinatology Pediatrics. 2021;66:(4):25–31. EDN: UHEGGS doi: 10.21508/1027-4065-2021-66-4-25-31
- Haller H, Bertram A, Nadrowitz F, Menne J. Monocyte chemoattractant protein-1 and the kidney. Curr Opin Nephrol Hypertens. 2016;25(1):42–49. doi: 10.1097/MNH.0000000000000186
- Morozova OL, Morozov DA, Lakomova DY, et al. Reflux nephropathy in children: Early diagnosis and monitoring. Urologiia. 2017;(4):107–112. EDN: ZFVHVF doi: 10.18565/urol.2017.4.107-112
- Bobkova IN, Tchebotareva NV, Kozlovskaya LV, et al. Determination of urinary excretion of monocyte chemotactic protein-1 (MCP-1) and transforming growth factor-β1 (TGF-β1) is an invasive method of assessment of tubulointerstitial fibrosis with chronic glomerulonephritis. Nephrology. 2006;10(4):49–55. EDN: JURDCN
- Batiushin MM, Gadaborsheva KhZ. Monocyte chemoattractant protein-1: Its role in the development of tubulointerstitial fibrosis in nephropathies. Medical News of North Caucasus. 2017;12(2): 234–239. EDN: ZCGGTV doi: 10.14300/mnnc.2017.12067
- Mohammadjafari H, Rafiei A, Mousavi SA, et al. Role of urinary levels of endothelin-1, monocyte chemotactic peptide-1, and N-acetyl glucosaminidase in predicting the severity of obstruction in hydronephrotic neonates. Korean J Urol. 2014;55(10):670–676. doi: 10.4111/kju.2014.55.10.670
- Ix JH, Shlipak MG. The promise of tubule biomarkers in kidney disease: A review. Am J Kidney Dis. 2021;78(5):719–727. doi: 10.1053/j.ajkd.2021.03.026
- Karmakova ТА, Sergeeva NS, Kanukoev КYu, et al. Kidney injury molecule 1 (KIM-1): A multifunctional glycoprotein and biological marker (review). Sovremennye tehnologii v medicine. 2021;13(3): 64–80. EDN: IONQXI doi: 10.17691/stm2021.13.3.08
- Humphreys BD, Xu F, Sabbisetti V, et al. Chronic epithelial kidney injury molecule-1 expression causes murine kidney fibrosis. J Clin Invest. 2013;123(9):4023–4035. doi: 10.1172/JCI45361
- Yiğit D, Taşkınlar H, Avlan D. Can serum neutrophil gelatinase associated lipocalin and kidney injury molecule-1 help in decision making for surgery in antenatally dedected hydronephrosis. J Pediatr Urol. 2021;17(1):71.e1–71.e7. doi: 10.1016/j.jpurol.2020.10.013
- Olvera-Posada D, Dayarathna T, Dion M, et al. KIM-1 is a potential urinary biomarker of obstruction: Results from a prospective cohort study. J Endourol. 2017;31(2):111–118. doi: 10.1089/end.2016.0215
- Zwiers AJ, Cransberg K, de Rijke YB, et al. Reference ranges for serum β-trace protein in neonates and children younger than 1 year of age. Clin Chem Lab Med. 2014;52(12):1815–1821. doi: 10.1515/cclm-2014-0371
- Endre ZH, Pickering JW. Acute kidney injury clinical trial design: Old problems, new strategies. Pediatr Nephrol. 2013;28(2):207–217. EDN: FLUGWS doi: 10.1007/s00467-012-2171-3
- Parmaksiz G, Noyan A, Dursun H, et al. Role of new biomarkers for predicting renal scarring in vesicoureteral reflux: NGAL, KIM-1, and L-FABP. Pediatr Nephrol. 2016;31(1):97–103. EDN: VJKCEO doi: 10.1007/s00467-015-3194-3
- Forster CS, Davarajan P. Neutrophil gelatinase-associated lipocalin: Utility in urologic conditions. Pediatr Nephrol. 2017;32(3):377–381. doi: 10.1007/s00467-016-3540-0
- Hwang SH, Lee YM, Choi Y, et al. Role of human primary renal fibroblast in TGF-β1-mediated fibrosis-mimicking devices. Int J Mol Sci. 2021;22(19):10758. doi: 10.3390/ijms221910758
- Loboda A, Sobczak M, Jozkowicz A, Dulak J. TGF-β1/Smads and miR-21 in renal fibrosis and inflammation. Mediators Inflamm. 2016;2016:8319283. doi: 10.1155/2016/8319283
- Semeshina OV, Luchaninova VN, Nee A, et al. Diagnostic significance of blood serum cytokine profile for chronic kidney disease in children. Nephrology. 2018;22(4):81–89. EDN: UWOSNR doi: 10.24884/1561-6274-2018-22-4-81-89
- Merrikhi A, Bahraminia E. Association of urinary transforming growth factor-β1 with the ureteropelvic junction obstruction. Adv Biomed Res. 2014;3:123. doi: 10.4103/2277-9175.133196
- Li J, Li XL, Li CQ. Immunoregulation mechanism of VEGF signaling pathway inhibitors and its efficacy on the kidney. Am J Med Sci. 2023;366(6):404–412. EDN: CSQTDN doi: 10.1016/j.amjms.2023.09.005
- Costache MI, Mihai I, Iordache S, et al. VEGF expression in pancreatic cancer and other malignancies: A review of the literature. Rom J Intern Med. 2015;53(3):199–208. doi: 10.1515/rjim-2015-0027
- Chebotareva NV, Bobkova IN, Neprintseva NV, et al. Urinary biomarkers for podocyte injury: Significance for evaluating the course and prognosis of chronic glomerulonephritis. Ther Arch. 2015;87(6):34–39. EDN: SJRDHL doi: 10.17116/terarkh201587634-39
- Burt LE, Forbes MS, Thornhill BA, et al. Renal vascular endothelial growth factor in neonatal obstructive nephropathy. II. Exogenous VEGF. Am J Physiol Renal Physiol. 2007;292(1):168–174. doi: 10.1152/ajprenal.00294.2005
- Burt LE, Forbes MS, Thornhill BA, et al. Renal vascular endothelial growth factor in neonatal obstructive nephropathy. I. Endogenous VEGF. Am J Physiol Renal Physiol. 2007;292(1):158–167. doi: 10.1152/ajprenal.00293.200