Acute systemic and subacute toxicity assessment of new alloy based on titanium nickelide with the addition of silver to replace bone defects in children



Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

BACKGROUND: Currently, restoration of bone tissue damaged in case of injuries and surgical interventions remains an urgent problem in medicine. The combination of titanium nickelide (NT) with silver seems promising in terms of reducing the activity of the inflammatory process, speedy regeneration and restoration of damaged bone tissue function.

AIMS: to determine the possible acute systemic and subacute toxicity of an innovative titanium nickelide alloy with silver in an experiment on laboratory animals.

METHODS: the study of acute systemic toxicity was carried out in white outbred mice (17-23g). The supernatant liquid of NT alloy powder with the addition of 0.5% silver on a water basis was injected into the tail vein (n=10), on a non-aqueous basis - intraperitoneally (n=10), in a volume of 50 ml/kg. The corresponding medium was used as a control (n=10). To identify subacute toxicity, samples were sewn into the thigh muscles of Wistar rats (250-320g): three experimental groups (n=10) - NT with 0.3% silver, 0.5% silver and 0% silver. The fourth group (n=10) - control (wound modeling without powder injection). After 28 days, the animals were removed from the experiment, and hematological and biochemical blood tests were performed.

RESULTS: no animal deaths or adverse clinical signs were recorded following the acute systemic toxicity test. The number of erythrocytes in the blood of experimental animals after intramuscular administration of NT with the addition of 0.5% silver was significantly higher than in control rats, remaining within the normal range for this indicator. A moderate decrease in platelet levels in animals treated with NT with 0.3% silver may be due to the presence of anti-inflammatory activity of the sample. The urea concentration in the blood of animals after suturing NT with 0.5% silver was significantly lower than in control animals (p = 0.019), which may be due to an increase in silver concentration of the alloy and requires further study.

CONCLUSIONS: new materials based on titanium nickelide with the addition of silver do not have acute systemic or subacute toxicity.

Keywords: titanium nickelide, silver, experimental animals, toxicity.

Full Text

Restricted Access

About the authors

Ivan I Gordienko

Ural State Medical University

Author for correspondence.
Email: ivan-gordienko@mail.ru
ORCID iD: 0000-0003-3157-4579
SPIN-code: 5368-0964
Scopus Author ID: 57198361838
ResearcherId: AEG-0529-2022

кандидат медицинских наук, доцент, доцент кафедры детской хирургии

Россия, 620028, Российская Федерация, Свердловская обл., г. Екатеринбург, ул. Репина, д. 3.

Maria N Dobrinskaya

Уральский государственный медицинский университет

Email: maria-nd@mail.ru
ORCID iD: 0000-0001-9208-9417

кандидат медицинских наук, доцент кафедры фармакологии и клинической фармакологии

Россия, 620028, Российская Федерация, Свердловская обл., г. Екатеринбург, ул. Репина, д. 3.

Sergey M Kutepov

Уральский государственный медицинский университет

Email: usma@usma.ru
ORCID iD: 0000-0002-3069-8150

член-корреспондент РАН, доктор медицинских наук, профессор, научный руководитель Института травматологии и ортопедии ЦНИЛ

Россия, 620028, Российская Федерация, Свердловская обл., г. Екатеринбург, ул. Репина, д. 3.

Nadezhda V Izmozherova

Уральский государственный медицинский университет

Email: nadezhda_izm@mail.ru
ORCID iD: 0000-0001-7826-9657

доктор медицинских наук, доцент, заведующий кафедрой фармакологии и клинической фармакологии

Россия, 620028, Российская Федерация, Свердловская обл., г. Екатеринбург, ул. Репина, д. 3.

Ekaterina S Marchenko

Национальный исследовательский Томский государственный университет

Email: 89138641814@mail.ru
ORCID iD: 0000-0003-4615-5270

доктор физико-математических наук, доцент, заведующий лабораторией медицинских сплавов и имплантатов с памятью формы

Россия

Irina P Antropova

Уральский государственный медицинский университет

Email: aip.hemolab@mail.ru
ORCID iD: 0000-0002-9957-2505

доктор биологических наук, ведущий научный сотрудник Института травматологии и ортопедии ЦНИЛ

Россия, 620028, Российская Федерация, Свердловская обл., г. Екатеринбург, ул. Репина, д. 3.

Larisa G Polushina

Уральский государственный медицинский университет

Email: polushina-larisa@bk.ru
ORCID iD: 0000-0002-4921-7222

кандидат медицинских наук, старший научный сотрудник ЦНИЛ

Россия, 620028, Российская Федерация, Свердловская обл., г. Екатеринбург, ул. Репина, д. 3.

Leonid P Larionov

Уральский государственный медицинский университет

Email: leonid-larionov@mail.ru

доктор медицинских наук, профессор, профессор кафедры фармакологии и клинической фармакологии

Россия, 620028, Российская Федерация, Свердловская обл., г. Екатеринбург, ул. Репина, д. 3.

Natalya A Tsap

Уральский государственный медицинский университет

Email: tsapna-ekat@rambler.ru
ORCID iD: 0000-0001-9050-3629

доктор медицинских наук, профессор, заслуженный врач Российской Федерации, заведующий кафедрой детской хирургии

Россия, 620028, Российская Федерация, Свердловская обл., г. Екатеринбург, ул. Репина, д. 3.

Stepan P Chernyii

Уральский государственный медицинский университет

Email: stechernyy@yandex.ru
ORCID iD: 0009-0002-0129-1244
SPIN-code: 2453-9105
Scopus Author ID: 1254222

ассистент кафедры детской хирургии, аспирант кафедры детской хирургии

Россия, 620028, Российская Федерация, Свердловская обл., г. Екатеринбург, ул. Репина, д. 3.

References

  1. Shamanaeva L, Diachkova E, Petruk P, Polyakov K, Cherkesov I, Ivanov S. Titanium nickelide in midface fractures treatment. J. Funct.Biomater. 2020;11(3):52. DOI: https://doi.org/10.3390/jfb11030052.
  2. Miličić LM, Majerič P, Lazić V, Milašin J, Jakšić M, Trišić D, Radović K. Experimental investigation of the biofunctional properties of Nickel–titanium alloys depending on the type of production. Molecules. 2022;27(6):1960. DOI: https://doi.org/10.3390/molecules27061960.
  3. Fadlallah SA, El-Bagoury N, Sanaa MF, El-Rab SMFG, Ahmed RA, El-Ousamii G. An overview of NiTi shape memory alloy: Corrosion resistance and antibacterial inhibition for dental application. Journal of Alloys and Compounds. 2014;583:455-464. DOI: https://doi.org/10.1016/j.jallcom.2013.08.029.
  4. Naujokat H, Gökkaya AI, Açil Y, Loger K, Klüter T, Fuchs S, Wiltfang J. In vivo biocompatibility evaluation of 3D-printed nickel–titanium fabricated byselective laser melting. J Mater Sci Mater Med. 2022;33(2):13. doi: 10.1007/s10856-022-06641-y.
  5. Rana M. Three-dimensional planning and computer-assisted surgery in craniofacial reconstruction. Int J Oral Maxillofac Surg. 2017;46:44. DOI: https://doi.org/10.1016/j.ijom.2017.02.165.
  6. Kanno T, Sukegawa S, Furuki Y, Nariai Y, Sekine J. Overview of innovative advances in bioresorbable plate systems for oral and maxillofacial surgery. Jpn Dent Sci Rev. 2018;54:127–38. DOI: https://doi.org/10.1016/j.jdsr.2018.03.003.
  7. Zheravin AA, Gyunter VE,Anisenya II, Garbukov EY, Zhamgaryan GS, Bogoutdinova AV. Reconstruction of the chest wall using titanium nickelid forcancerpatients. Siberian Journal of Oncology. 2015;(3):31-38. (In Russ.) DOI:10. 22. 10.17116/onkolog20211002122.
  8. Aihara H, Zider J, Fanton G, Duerig T. Combustion synthesis porous nitinol for biomedical applications. Int J Biomater. 2019;2019:4307461. doi: 10.1155/2019/4307461.
  9. Ayers RA, Simske SJ, Bateman T, Petkus A, Sachdeva R, Gyunter V. Effect of nitinol implant porosity on cranial bone ingrowth and apposition after 6 weeks. J Biomed Mater Res: Off J Soc Biomater, Jpn Soc Biomater, Aust Soc Biomater. 1999;45:42–7. DOI:https://doi.org/10.1002/(sici)1097-4636(199904)45:1<42::aid-jbm6>3.0.co;2-q.
  10. Oliver JN, Su Y, Lu X, Kuo P, Du J, Zhu D. Bioactive glass coatings on metallic implants for biomedical applications. Bioact Mater. 2019;4:261–70. DOI: https://doi.org/10.1016/j.bioactmat.2019.09.002.
  11. Marchenko E.S., Gordienko I.I., Kozulin A.A., Baigonakova G.A., Borisov S.A., Garin A.S., Cherny S.P., Choinzonov E.L., Kulbakin D.E. Study of the biocompatibility of porous 3D-TiNi implants in vivo. Siberian Journal of Clinical and Experimental Medicine. 2024;39(1):184-193. (In Russ.) https://doi.org/10.29001/2073-8552-2024-39-1-184-193
  12. Marchenko, E.S., Dubovikov, K.M., Baigonakova, G.A., Gordienko, I.I., Volinsky, A.A. Surface Structure and Properties of Hydroxyapatite Coatings on NiTi Substrates. Coatings. 2023;13, 722. (In Russ.) DOI:https://doi.org/10.3390/ coatings13040722.
  13. Marchenko, E.S., Baigonakova, G.A., Dubovikov, K.M., Kokorev, O.V., Gordienko, I.I., Chudinova, E.A. Properties of Coatings Based on Calcium Phosphate and Their Effect on Cytocompatibility and Bioactivity of Titanium Nickelide. Materials. 2023;16, 2581. DOI:https://doi.org/10.3390/ ma16072581.
  14. Guo M, Qi B, Li J, Shi X, Ni H, Ren J et al. Mechanical properties evaluation of metacarpophalangeal joint prosthesis with new titanium-nickel memory alloy: a cadaver study. BMC Musculoskeletal Disorders. 2023;24(1):738. DOI: https://doi.org/10.1186/s12891-023-06859-z.
  15. Chekotu JC, Groarke R, O’Toole K, Brabazon D. Advances in selective laser melting of nitinol shape memory alloy part production. Materials. 2019;12:809. DOI: https://doi.org/10.3390/ma12050809.
  16. Simske S, Sachdeva R. Cranial bone apposition and ingrowth in a porous nickel–titanium implant. J Biomed Mater Res. 1995;29:527–33. DOI: https://doi.org/10.1002/jbm.820290413.
  17. Kujala S, Ryhänen J, Danilov A, Tuukkanen J. Effect of porosity on the osteointegration and bone ingrowth of a weight-bearing nickel–titanium bone graft substitute. Biomaterials. 2003;24:4691–7. DOI: https://doi.org/10.1016/s0142-9612(03)00359-4.
  18. Klopfleisch R, Jung F. The pathology of the foreign body reaction against biomaterials. J Biomed Mater Res A. 2017;105:927–40. doi: DOI: https://doi.org/10.1002/jbm.a.35958.
  19. Trindade R, Albrektsson T, Tengvall P, Wennerberg A. Foreign body reaction to biomaterials: on mechanisms for buildup and breakdown of osseointegration. Clinimplant Dent Relat Res. 2016;18:192–203. DOI: https://doi.org/10.1111/cid.12274.
  20. Anderson JM, Rodriguez A, Chang DT. Foreign body reaction to biomaterials. Semin Immunol. 2008; 20:86–100. DOI:https://doi.org/10.1016/j.smim.2007.11.004.
  21. Nisar P, Ali N, Rahman L, Ali M, Shinwari ZK. Antimicrobial activities of biologically synthesized metal nanoparticles: An insight into the mechanism of action. J. Biol. Inorg. Chem. 2019;24:919–921. DOI: https://doi.org/10.1007/s00775-019-01717-7.
  22. Pant B, Pokharel P, Tiwari AP, Saud PS, Park M, Ghouri ZK, Choi S, Park SJ, Kim HY. Characterization and antibacterial properties of aminophenol grafted and Ag NPs decorated graphene nanocomposites. Ceram. Int. 2015;41:5656–5662. DOI: https://doi.org/10.1016/j.ceramint.2014.12.150.
  23. Xu WP, Zhang LC, Li JP, Lu Y, Li HH, Ma YN et al. Facile synthesis of silver@ graphene oxide nanocomposites and their enhanced antibacterial properties. J. Mater. Chem. 2011;21:4593–4597. doi: 10.1039/c0jm03376f.
  24. Bai RG, Muthoosamy K, Shipton FN, Pandikumar A, Rameshkumar P, Huang NM, Manickam S. The biogenic synthesis of a reduced graphene oxide–silver (RGO–Ag) nanocomposite and its dual applications as an antibacterial agent and cancer biomarker sensor. RSC Adv. 2016;6:36576–36587. doi: 10.1039/c6ra02928k.
  25. Sedki M, Mohamed MB, Fawzy M, Abdelrehim DA, Abdel-Mottaleb MM. Phytosynthesis of silver–reduced graphene oxide (Ag–RGO) nanocomposite with an enhanced antibacterial effect using potamogeton pectinatus extract. RSC Adv. 2015;5:17358–17365. doi: 10.1039/C4RA13117G.
  26. Kumar S. Spreading and orientation of silver nano-drops over a flat graphene substrate: An atomistic investigation. Carbon. 2018;138:26–41. doi: 10.1016/j.carbon.2018.05.057.
  27. Ko YC, Fang HY, Chen DH. Fabrication of Ag/ZnO/reduced graphene oxide nanocomposite for SERS detection and multiway killing of bacteria. J. Alloy Compd. 2017;695:1145–1153. doi: 10.1016/j.jallcom.2016.10.241.
  28. Borisov SA, Gordienko II, Tsap NA, Baigonakova GA, Marchenko ES, Larikov VA. Antibacterial activity and biocompatibility of titanium nickelide augments with the addition of silver nanoparticles for bone grafting: an experimental study. Russian Journal of Pediatric Surgery, Anesthesia and Intensive Care. 2024;14(1):21–31. (In Russ.) DOI: https://doi.org/10.17816/psaic1566
  29. Baigonakova G.A., Marchenko E.S., Gordienko I.I., Larikov V.A., Volinsky A.A., Prokopchuk A.O. Biocompatibility and Antibacterial Properties of NiTiAg Porous Alloys for Bone Implants. ACS Omega. 2024;9 (24), 25638-25645. doi: 10.1021/acsomega.3c08163.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) Gordienko I.I., Dobrinskaya M.N., Kutepov S.M., Izmozherova N.V., Marchenko E.S., Antropova I.P., Polushina L.G., Larionov L.P., Tsap N.A., Chernyii S.P.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies